1. Templating Iron(III) Oxides on DNA Molecules.
- Author
-
Zubairu, Siyaka Mj, Idris, Sulaiman O., Gimba, Casmir E., Uzairu, Adamu, Houlton, Andrew, and Horrocks, Benjamin R.
- Subjects
- *
X-ray photoelectron spectra , *TRANSMISSION electron microscopy , *DIFFRACTION patterns , *TEMPERATURE control , *ABSORPTION spectra - Abstract
Fe(III) oxides were prepared as free nanoparticles and on DNA templates via the precipitation of Fe(III) salts with NaOH in the presence/absence of DNA. Through control of the pH and temperature, FeOOH and Fe2O3 were synthesised. The formation of templated materials FeOOH/DNA and Fe2O3/DNA was confirmed using UV-Vis absorption and FTIR spectra. The direct optical gap of Fe2O3/DNA was estimated as 3.2 eV; the absorption by FeOOH/DNA and Fe2O3/DNA at longer wavelengths is weaker, but consistent with indirect gaps near 2 eV. X-ray photoelectron spectra confirmed the presence of Fe(III) and DNA in the templated samples. Analysis of the X-ray diffraction patterns of both templated and non-templated FeOOH and Fe2O3 demonstrated that the materials were the α-FeOOH and α-Fe2O3 polymorphs with crystallite diameters of the DNA-templated materials estimated as 7.6 nm and 6.8 nm. Transmission electron microscopy showed needle-like crystals of both FeOOH and Fe2O3, but the Fe2O3 contains some globular structures. In contrast, the morphology of FeOOH/DNA and Fe2O3/DNA consists of needle-like crystallites of the respective oxides organised into complex dendritic structures with a length on the 10 μm scale formed by the DNA molecules. Finally, scanned conductance microscopy provided evidence for the conductivity of the FeOOH/DNA after alignment via molecular combing on an Si/SiO2 substrate. Fe2O3/DNA did not exhibit any detectable conductivity. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF