8 results on '"Berti D"'
Search Results
2. Bacterial lipids drive compartmentalization on the nanoscale.
- Author
-
De Nicola A, Montis C, Donati G, Molinaro A, Silipo A, Balestri A, Berti D, Di Lorenzo F, Zhu YL, and Milano G
- Subjects
- Lipid A, Scattering, Small Angle, X-Ray Diffraction, Bacteria, Glycolipids, Lipopolysaccharides chemistry, Liposomes
- Abstract
The design of cellular functions in synthetic systems, inspired by the internal partitioning of living cells, is a constantly growing research field that is paving the way to a large number of new remarkable applications. Several hierarchies of internal compartments like polymersomes, liposomes, and membranes are used to control the transport, release, and chemistry of encapsulated species. However, the experimental characterization and the comprehension of glycolipid mesostructures are far from being fully addressed. Lipid A is indeed a glycolipid and the endotoxic part of Gram-negative bacterial lipopolysaccharide; it is the moiety that is recognized by the eukaryotic receptors giving rise to the modulation of innate immunity. Herein we propose, for the first time, a combined approach based on hybrid Particle-Field (hPF) Molecular Dynamics (MD) simulations and Small Angle X-Ray Scattering (SAXS) experiments to gain a molecular picture of the complex supramolecular structures of lipopolysaccharide (LPS) and lipid A at low hydration levels. The mutual support of data from simulations and experiments allowed the unprecedented discovery of the presence of a nano-compartmentalized phase composed of liposomes of variable size and shape which can be used in synthetic biological applications.
- Published
- 2023
- Full Text
- View/download PDF
3. Ball milled glyco-graphene oxide conjugates markedly disrupted Pseudomonas aeruginosa biofilms.
- Author
-
Tricomi J, Cacaci M, Biagiotti G, Caselli L, Niccoli L, Torelli R, Gabbani A, Di Vito M, Pineider F, Severi M, Sanguinetti M, Menna E, Lelli M, Berti D, Cicchi S, Bugli F, and Richichi B
- Subjects
- Biofilms, Monosaccharides, Graphite chemistry, Graphite pharmacology, Pseudomonas aeruginosa
- Abstract
The engineering of the surface of nanomaterials with bioactive molecules allows controlling their biological identity thus accessing functional materials with tuned physicochemical and biological profiles suited for specific applications. Then, the manufacturing process, by which the nanomaterial surface is grafted, has a significant impact on their development and innovation. In this regard, we report herein the grafting of sugar headgroups on a graphene oxide (GO) surface by exploiting a green manufacturing process that relies on the use of vibrational ball mills, a grinding apparatus in which the energy is transferred to the reacting species through collision with agate spheres inside a closed and vibrating vessel. The chemical composition and the morphology of the resulting glyco-graphene oxide conjugates (glyco-GO) are assessed by the combination of a series of complementary advanced techniques ( i.e. UV-vis and Raman spectroscopy, transmission electron microscopy, and Magic Angle Spinning (MAS) solid-state NMR (ssNMR) providing in-depth insights into the chemical reactivity of GO in a mechanochemical route. The conjugation of monosaccharide residues on the GO surface significantly improves the antimicrobial activity of pristine GO against P. aeruginosa . Indeed, glyco-GO conjugates, according to the monosaccharide derivatives installed into the GO surface, affect the ability of sessile cells to adhere to a polystyrene surface in a colony forming assay. Scanning electron microscopy images clearly show that glyco-GO conjugates significantly disrupt an already established P. aeruginosa biofilm.
- Published
- 2022
- Full Text
- View/download PDF
4. A small heterobifunctional ligand provides stable and water dispersible core-shell CdSe/ZnS quantum dots (QDs).
- Author
-
Salerno G, Scarano S, Mamusa M, Consumi M, Giuntini S, Macagnano A, Nativi S, Fragai M, Minunni M, Berti D, Magnani A, Nativi C, and Richichi B
- Abstract
We describe a simple method to prepare water dispersible core-shell CdSe/ZnS quantum dots (QDs) 1 by capping QDs with a new thiol-containing heterobifunctional dicarboxylic ligand 4 (DHLA-EDADA). This ligand, obtained on a gram scale through a few synthetic steps, provides a compact layer on the QDs, whose hydrodynamic size in H2O is 15 nm ± 3 nm. The colloidal stability is dramatically enhanced with respect to the well-known (±) α-lipoic acid (DHLA). The ligand affinity towards QDs and the water dispersibility of nanocrystals 1 are addressed by the dithiol groups of DHLA, which chelate the zinc of the shell, and by the dicarboxylic groups of the ethylenediamine-N,N-diacetic acid (EDADA) residue, respectively. The effects of pH, buffer solutions, and biological medium on the stability of QDs 1 were assessed by monitoring the photoluminescence (PL) and hydrodynamic size over time. Highly fluorescent QD dispersions, stable over extended periods of time and over broad pH ranges and buffer types, were obtained. Furthermore, we show that the DHLA-EDADA ligand 4 also endows QDs with functional groups suitable for further conjugation and for metal ion detection. As a case study to illustrate the potential of our approach, we report the preparation and characterization of a highly luminescent orange light emitting polymer-QD 1 composite film.
- Published
- 2018
- Full Text
- View/download PDF
5. On the thermotropic and magnetotropic phase behavior of lipid liquid crystals containing magnetic nanoparticles.
- Author
-
Mendozza M, Montis C, Caselli L, Wolf M, Baglioni P, and Berti D
- Subjects
- Scattering, Small Angle, X-Ray Diffraction, Drug Delivery Systems, Lipids, Liquid Crystals, Magnetite Nanoparticles
- Abstract
The inclusion of superparamagnetic iron oxide nanoparticles (SPIONs) in lipid mesophases is a promising strategy for drug-delivery applications, combining the innate biocompatibility of lipid architectures with SPIONs' response to external magnetic fields. Moreover, the organization of SPIONs within the lipid scaffold can lead to locally enhanced SPIONs concentration and improved magnetic response, which is key to overcome the current limitations of hyperthermic treatments. Here we present a Small-Angle X-ray Scattering (SAXS) structural investigation of the thermotropic and magnetotropic behavior of glyceryl monooleate (GMO)/water mesophases, loaded with hydrophobic SPIONs. We prove that even very low amounts of SPIONs deeply alter the phase behavior and thermotropic properties of the mesophases, promoting a cubic to hexagonal phase transition, which is similarly induced upon application of an Alternating Magnetic Field (AMF). Moreover, in the hexagonal phase SPIONs spontaneously self-assemble within the lipid scaffold into a linear supraparticle. This phase behavior is interpreted in the framework of the Helfrich's theory, which shows that SPIONs affect the mesophase both from a viscoelastic and from a structural standpoint. Finally, the dispersion of these cubic phases into stable magnetic colloidal particles, which retain their liquid crystalline internal structure, is addressed as a promising route towards magneto-responsive drug-delivery systems (DDS).
- Published
- 2018
- Full Text
- View/download PDF
6. Interaction of nanoparticles with lipid membranes: a multiscale perspective.
- Author
-
Montis C, Maiolo D, Alessandri I, Bergese P, and Berti D
- Subjects
- Diffusion, Materials Testing, Models, Molecular, Gold chemistry, Lipid Bilayers chemistry, Metal Nanoparticles chemistry, Metal Nanoparticles ultrastructure, Models, Chemical
- Abstract
Freestanding lipid bilayers were challenged with 15 nm Au nanospheres either coated by a citrate layer or passivated by a protein corona. The effect of Au nanospheres on the bilayer morphology, permeability and fluidity presents strong differences or similarities, depending on the observation length scale, from the colloidal to the molecular domains. These findings suggest that the interaction between nanoparticles and lipid membranes should be conveniently treated as a multiscale phenomenon.
- Published
- 2014
- Full Text
- View/download PDF
7. Smart cleaning of cultural heritage: a new challenge for soft nanoscience.
- Author
-
Baglioni M, Giorgi R, Berti D, and Baglioni P
- Abstract
The search for innovative, smart and performing cleaning agents is one of the main issues of modern conservation science. Nanosciences do not only provide solutions to this scientific field in terms of new materials but also change radically the approach to problems and challenges. In this feature article we review the most innovative nanostructured systems developed in the last decade for the cleaning of artworks together with some noteworthy case studies. Micelles, microemulsions, thickened complex fluids, and responsive gels that constitute the new "cleaning palette" for modern conservators are here presented and critically analyzed. The development of these smart nanostructured systems requires the comprehension of their behavior and interactions with other materials down to the nanoscale. In the last section of this manuscript we report on the most recent results from a study about the mechanism of polymer removal from porous artifacts using nanofluids, such as micelles or microemulsions. The rules of classical detergency do not fully address the polymer removal mechanism and a schematic model of the process is proposed.
- Published
- 2012
- Full Text
- View/download PDF
8. Removal of acrylic coatings from works of art by means of nanofluids: understanding the mechanism at the nanoscale.
- Author
-
Baglioni M, Rengstl D, Berti D, Bonini M, Giorgi R, and Baglioni P
- Subjects
- Micelles, Microscopy, Atomic Force, Scattering, Small Angle, Solvents chemistry, Spectroscopy, Fourier Transform Infrared, X-Ray Diffraction, Detergents chemistry, Nanostructures chemistry, Nanotechnology, Paintings, Polymers chemistry
- Abstract
Conservation of works of art often involves the inappropriate application of synthetic polymers. We have proposed the use of alternative methodologies for conservation and formulated innovative cleaning nanostructured systems to remove previously applied polymer films and grime from painted surfaces. In particular, a novel "micellar system" composed of water, SDS, 1-pentanol, ethyl acetate and propylene carbonate was recently formulated and successfully used to remove acrylic and vinyl/acrylic copolymers from Mesoamerican wall paintings in the archeological site of Cholula, Mexico. This contribution reports on the mechanism of the interaction process that takes place between the nanostructured fluid and the polymer coating at the nanoscale. The structural properties of the "micellar solution" and of the polymer film are investigated before, during and after the interaction process using several surface and solution techniques. Rather than a classical detergency mechanism, we demonstrate that micelles act as solvent containers and interact with the polymer film leading to its swelling and detachment from the surface and to its segregation in a liquid droplet, which phase-separates from the aqueous bulk. After the removal process the micelles become smaller in size and undergo a structural re-arrangement due to the depletion of the organic solvents. These findings can be framed in an interaction mechanism which describes the removal process, opening up new perspectives in the design and formulation of new cleaning systems specifically tailored for intervention on particular conservation issues.
- Published
- 2010
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.