Jelen, Žiga, Majerič, Peter, Zadravec, Matej, Anžel, Ivan, Rakuša, Martin, and Rudolf, Rebeka
To monitor the progress and prevent the spread of the COVID-19 pandemic in real time and outside laboratories, it is essential to develop effective tests that can ensure rapid, selective, and reliable diagnosis of infected persons in different environments. Key in this regard is the lateral flow immunoassays (LFIAs) that can detect the presence of the SARS-CoV-2 virus quickly, with the aid of nanoparticles (NPs) and specific proteins. We report the use of gold (Au) NPs AuNPs synthesised from a gold(iii) chloride tetrahydrate precursor in a USP device and collected in a suspension composed of deionised water with polyvinylpyrrolidone as a stabiliser and cryoprotectant. In combination with freeze-drying of the AuNPs’ suspension to achieve water elimination, improved stability, and the target concentration, they exhibit the necessary properties for use as markers in LFIA rapid diagnostic tests. This was confirmed by complementary characterisation determined by using the techniques including inductively coupled plasma-optical emission spectrometry, dynamic light scattering method and zeta-potential, ultraviolet-visible spectroscopy, X-ray diffraction, scanning electron microscopy with energy dispersion spectrometer, and transmission electron microscopy, as well as with the preparation of a prototype LFIA test strip with AuNPs. Thus, such AuNPs, as well as the USP method, show promise for the development of new markers for use in LFIA.