1. Engineered tRNAs suppress nonsense mutations in cells and in vivo
- Author
-
Suki Albers, Elizabeth C. Allen, Nikhil Bharti, Marcos Davyt, Disha Joshi, Carlos G. Perez-Garcia, Leonardo Santos, Rajesh Mukthavaram, Miguel Angel Delgado-Toscano, Brandon Molina, Kristen Kuakini, Maher Alayyoubi, Kyoung-Joo Jenny Park, Grishma Acharya, Jose A. Gonzalez, Amit Sagi, Susan E. Birket, Guillermo J. Tearney, Steven M. Rowe, Candela Manfredi, Jeong S. Hong, Kiyoshi Tachikawa, Priya Karmali, Daiki Matsuda, Eric J. Sorscher, Pad Chivukula, and Zoya Ignatova
- Subjects
Multidisciplinary - Abstract
Nonsense mutations are the underlying cause of approximately 11% of all inherited genetic diseases1. Nonsense mutations convert a sense codon that is decoded by tRNA into a premature termination codon (PTC), resulting in an abrupt termination of translation. One strategy to suppress nonsense mutations is to use natural tRNAs with altered anticodons to base-pair to the newly emerged PTC and promote translation2–7. However, tRNA-based gene therapy has not yielded an optimal combination of clinical efficacy and safety and there is presently no treatment for individuals with nonsense mutations. Here we introduce a strategy based on altering native tRNAs into efficient suppressor tRNAs (sup-tRNAs) by individually fine-tuning their sequence to the physico-chemical properties of the amino acid that they carry. Intravenous and intratracheal lipid nanoparticle (LNP) administration of sup-tRNA in mice restored the production of functional proteins with nonsense mutations. LNP–sup-tRNA formulations caused no discernible readthrough at endogenous native stop codons, as determined by ribosome profiling. At clinically important PTCs in the cystic fibrosis transmembrane conductance regulator gene (CFTR), the sup-tRNAs re-established expression and function in cell systems and patient-derived nasal epithelia and restored airway volume homeostasis. These results provide a framework for the development of tRNA-based therapies with a high molecular safety profile and high efficacy in targeted PTC suppression.
- Published
- 2023
- Full Text
- View/download PDF