1. Observation of vortices in a dipolar supersolid.
- Author
-
Casotti, Eva, Poli, Elena, Klaus, Lauritz, Litvinov, Andrea, Ulm, Clemens, Politi, Claudia, Mark, Manfred J., Bland, Thomas, and Ferlaino, Francesca
- Abstract
Supersolids are states of matter that spontaneously break two continuous symmetries: translational invariance owing to the appearance of a crystal structure and phase invariance owing to phase locking of single-particle wavefunctions, responsible for superfluid phenomena. Although originally predicted to be present in solid helium1–5, ultracold quantum gases provided a first platform to observe supersolids6–10, with particular success coming from dipolar atoms8–12. Phase locking in dipolar supersolids has been investigated through, for example, measurements of the phase coherence8–10 and gapless Goldstone modes13, but quantized vortices, a hydrodynamic fingerprint of superfluidity, have not yet been observed. Here, with the prerequisite pieces at our disposal, namely a method to generate vortices in dipolar gases14,15 and supersolids with two-dimensional crystalline order11,16,17, we report on the theoretical investigation and experimental observation of vortices in the supersolid phase (SSP). Our work reveals a fundamental difference in vortex seeding dynamics between unmodulated and modulated quantum fluids. This opens the door to study the hydrodynamic properties of exotic quantum systems with numerous spontaneously broken symmetries, in disparate domains such as quantum crystals and neutron stars18. Magnetostirring is used to rotate the magnetic field and set a dipolar supersolid composed of ultracold atoms spinning, revealing fundamental differences in vortex seeding dynamics between modulated and unmodulated quantum fluids. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF