1. Self-generated surface magnetic fields inhibit laser-driven sheath acceleration of high-energy protons
- Author
-
Laurent Gremillet, A. V. Korzhimanov, A. Kon, Mark Kimmel, Ryosuke Kodama, Motoaki Nakatsutsumi, M. V. Starodubtsev, Jens Schwarz, Briggs W. Atherton, Matthias Geissel, Sophia Chen, S. Buffechoux, L. Hurd, P. Audebert, Marius Schollmeier, Yasuhiko Sentoku, Julien Fuchs, Patrick K. Rambo, Laboratoire pour l'utilisation des lasers intenses (LULI), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Osaka University [Osaka], Institute of Applied Physics (IAP, Nizhny Novgorod), Sandia National Laboratories [Albuquerque] (SNL), Sandia National Laboratories - Corporation, Direction des Applications Militaires (DAM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Graduate School of Engineering, Osaka University, Graduate School of Engineering, ANR-17-CE30-0026,PiNNaCLE,Développement d'une ligne de neutrons pulsés compacte et de haute brillance(2017), ANR-11-IDEX-0004,SUPER,Sorbonne Universités à Paris pour l'Enseignement et la Recherche(2011), and European Project: 654148,H2020,H2020-INFRAIA-2014-2015,LASERLAB-EUROPE(2015)
- Subjects
Proton ,Science ,Physics::Optics ,General Physics and Astronomy ,Electron ,01 natural sciences ,7. Clean energy ,Article ,General Biochemistry, Genetics and Molecular Biology ,010305 fluids & plasmas ,law.invention ,Acceleration ,law ,Electric field ,0103 physical sciences ,Spallation ,Physics::Atomic Physics ,lcsh:Science ,010306 general physics ,[PHYS]Physics [physics] ,Physics ,Multidisciplinary ,General Chemistry ,Plasma ,Laser ,Computational physics ,Magnetic field ,Physics::Accelerator Physics ,lcsh:Q - Abstract
High-intensity lasers interacting with solid foils produce copious numbers of relativistic electrons, which in turn create strong sheath electric fields around the target. The proton beams accelerated in such fields have remarkable properties, enabling ultrafast radiography of plasma phenomena or isochoric heating of dense materials. In view of longer-term multidisciplinary purposes (e.g., spallation neutron sources or cancer therapy), the current challenge is to achieve proton energies well in excess of 100 MeV, which is commonly thought to be possible by raising the on-target laser intensity. Here we present experimental and numerical results demonstrating that magnetostatic fields self-generated on the target surface may pose a fundamental limit to sheath-driven ion acceleration for high enough laser intensities. Those fields can be strong enough (~105 T at laser intensities ~1021 W cm–2) to magnetize the sheath electrons and deflect protons off the accelerating region, hence degrading the maximum energy the latter can acquire., Laser-generated ion acceleration has received increasing attention due to recent progress in super-intense lasers. Here the authors demonstrate the role of the self-generated magnetic field on the ion acceleration and limitations on the energy scaling with laser intensity.
- Published
- 2018
- Full Text
- View/download PDF