1. Creating a bacterium that forms eukaryotic nucleosome core particles
- Author
-
Xinyun Jing, Niubing Zhang, Xiaojuan Zhou, Ping Chen, Jie Gong, Kaixiang Zhang, Xueting Wu, Wenjuan Cai, Bang-Ce Ye, Pei Hao, Guo-ping Zhao, Sheng Yang, and Xuan Li
- Subjects
Science - Abstract
Abstract The nucleosome is one of the hallmarks of eukaryotes, a dynamic platform that supports many critical functions in eukaryotic cells. Here, we engineer the in vivo assembly of the nucleosome core in the model bacterium Escherichia coli. We show that bacterial chromosome DNA and eukaryotic histones can assemble in vivo to form nucleosome complexes with many features resembling those found in eukaryotes. The formation of nucleosomes in E. coli was visualized with atomic force microscopy and using tripartite split green fluorescent protein. Under a condition that moderate histones expression was induced at 1 µM IPTG, the nucleosome-forming bacterium is viable and has sustained growth for at least 110 divisions in longer-term growth experiments. It exhibits stable nucleosome formation, a consistent transcriptome across passages, and reduced growth fitness under stress conditions. In particular, the nucleosome arrays in E. coli genic regions have profiles resembling those in eukaryotic cells. The observed compatibility between the eukaryotic nucleosome and the bacterial chromosome machinery may reflect a prerequisite for bacteria-archaea union, providing insight into eukaryogenesis and the origin of the nucleosome.
- Published
- 2024
- Full Text
- View/download PDF