1. Formation and impact of nanoscopic oriented phase domains in electrochemical crystalline electrodes
- Author
-
Wenxiang Chen, Xun Zhan, Renliang Yuan, Saran Pidaparthy, Adrian Xiao Bin Yong, Hyosung An, Zhichu Tang, Kaijun Yin, Arghya Patra, Heonjae Jeong, Cheng Zhang, Kim Ta, Zachary W. Riedel, Ryan M. Stephens, Daniel P. Shoemaker, Hong Yang, Andrew A. Gewirth, Paul V. Braun, Elif Ertekin, Jian-Min Zuo, and Qian Chen
- Subjects
Mechanics of Materials ,Mechanical Engineering ,General Materials Science ,General Chemistry ,Condensed Matter Physics - Abstract
Electrochemical phase transformation in ion-insertion crystalline electrodes is accompanied by compositional and structural changes, including the microstructural development of oriented phase domains. Previous studies have identified prevailingly transformation heterogeneities associated with diffusion- or reaction-limited mechanisms. In comparison, transformation-induced domains and their microstructure resulting from the loss of symmetry elements remain unexplored, despite their general importance in alloys and ceramics. Here, we map the formation of oriented phase domains and the development of strain gradient quantitatively during the electrochemical ion-insertion process. A collocated four-dimensional scanning transmission electron microscopy and electron energy loss spectroscopy approach, coupled with data mining, enables the study. Results show that in our model system of cubic spinel MnO
- Published
- 2022