1. Prospective evaluation of smartwatch-enabled detection of left ventricular dysfunction
- Author
-
Zachi I. Attia, David M. Harmon, Jennifer Dugan, Lukas Manka, Francisco Lopez-Jimenez, Amir Lerman, Konstantinos C. Siontis, Peter A. Noseworthy, Xiaoxi Yao, Eric W. Klavetter, John D. Halamka, Samuel J. Asirvatham, Rita Khan, Rickey E. Carter, Bradley C. Leibovich, and Paul A. Friedman
- Subjects
General Medicine ,Article ,General Biochemistry, Genetics and Molecular Biology - Abstract
Although artificial intelligence (AI) algorithms have been shown to be capable of identifying cardiac dysfunction, defined as ejection fraction (EF) ≤ 40%, from 12-lead electrocardiograms (ECGs), identification of cardiac dysfunction using the single-lead ECG of a smartwatch has yet to be tested. In the present study, a prospective study in which patients of Mayo Clinic were invited by email to download a Mayo Clinic iPhone application that sends watch ECGs to a secure data platform, we examined patient engagement with the study app and the diagnostic utility of the ECGs. We digitally enrolled 2,454 unique patients (mean age 53 ± 15 years, 56% female) from 46 US states and 11 countries, who sent 125,610 ECGs to the data platform between August 2021 and February 2022; 421 participants had at least one watch-classified sinus rhythm ECG within 30 d of an echocardiogram, of whom 16 (3.8%) had an EF ≤ 40%. The AI algorithm detected patients with low EF with an area under the curve of 0.885 (95% confidence interval 0.823–0.946) and 0.881 (0.815–0.947), using the mean prediction within a 30-d window or the closest ECG relative to the echocardiogram that determined the EF, respectively. These findings indicate that consumer watch ECGs, acquired in nonclinical environments, can be used to identify patients with cardiac dysfunction, a potentially life-threatening and often asymptomatic condition.
- Published
- 2022
- Full Text
- View/download PDF