1. MO330ACTIVATION OF Β2 ADRENERGIC RECEPTOR SIGNALING IN MACROPHAGES BLOCKS SYSTEMIC INFLAMMATION AND PROTECTS AGAINST RENAL ISCHEMIA/REPERFUSION INJURY
- Author
-
Reiko Inagi, Sho Hasegawa, Masaomi Nangaku, and Tsuyoshi Inoue
- Subjects
Transplantation ,Adoptive cell transfer ,Adrenergic receptor ,business.industry ,medicine.medical_treatment ,Inflammation ,Pharmacology ,Systemic inflammation ,Butoxamine ,Norepinephrine (medication) ,Cytokine ,Nephrology ,Medicine ,Tumor necrosis factor alpha ,medicine.symptom ,business ,medicine.drug - Abstract
Background and Aims The sympathetic nervous system regulates immune cell dynamics. However, the detailed role of sympathetic signaling in inflammatory diseases is still unclear because it varies according to the disease situation and responsible cell types. Here, we focused on sympathetic signaling in macrophages and sought to determine its detailed roles in lipopolysaccharide (LPS)-induced systemic inflammation and renal ischemia/reperfusion injury (IRI). Method In vitro, RAW 264.7 cells and murine peritoneal macrophages were used to determine the effects of β2 adrenergic receptor (Adrb2) signaling on LPS-induced proinflammatory cytokine (tumor necrosis factor-α; TNF-α) production. We also identified the critical gene that mediates the anti-inflammatory effect of Adrb2 signaling by RNA-sequencing. In vivo, we examined the effects of salbutamol (a selective Adrb2 agonist) in LPS-induced systemic inflammation and renal IRI. The involvement of macrophage Adrb2 signaling was confirmed by macrophage-specific Adrb2 conditional knockout (cKO) mice and adoptive transfer of salbutamol-treated macrophages. We also performed single-cell RNA sequencing of renal tissue to analyze the renoprotective role of salbutamol-treated macrophages in detail. Results In vitro, norepinephrine, a sympathetic neurotransmitter, suppressed LPS-induced TNF-α production in macrophages. This anti-inflammatory effect was also induced by salbutamol and reversed by butoxamine (a selective Adrb2 antagonist) in a dose-dependent manner, indicating the importance of Adrb2 in this process. RNA sequencing of these macrophages revealed that T-cell immunoglobulin and mucin-3 (Tim3) expressions were upregulated by the activation of Adrb2 signaling, which partially mediated the anti-inflammatory phenotypic alteration in macrophages. In vivo, salbutamol administration mitigated LPS-induced systemic inflammation and protected against renal IRI; this protection was mitigated in macrophage-specific Adrb2 cKO mice. Adoptive transfer of salbutamol-treated macrophages also protected against renal IRI (Figure 1). Single-cell RNA sequencing revealed that this protection was associated with the accumulation of Tim3-expressing macrophages in the renal tissue. Conclusion The activation of β2 adrenergic receptor signaling in macrophages induces anti-inflammatory phenotypic alterations partially via the induction of Tim3 expressions, which blocks LPS-induced systemic inflammation and protects against renal IRI.
- Published
- 2021
- Full Text
- View/download PDF