1. Contrastive cross-domain sequential recommendation via emphasized intention features.
- Author
-
Ni R, Cai W, and Jiang Y
- Subjects
- Humans, Neural Networks, Computer, Algorithms, Entropy, Normal Distribution, Intention
- Abstract
The objective of cross-domain sequential recommendation is to forecast upcoming interactions by leveraging past interactions across diverse domains. Most methods aim to utilize single-domain and cross-domain information as much as possible for personalized preference extraction and effective integration. However, on one hand, most models ignore that cross-domain information is composed of multiple single-domains when generating representations. They still treat cross-domain information the same way as single-domain information, resulting in noisy representation generation. Only by imposing certain constraints on cross-domain information during representation generation can subsequent models minimize interference when considering user preferences. On the other hand, some methods neglect the joint consideration of users' long-term and short-term preferences and reduce the weight of cross-domain user preferences to minimize noise interference. To better consider the mutual promotion of cross-domain and single-domains factors, we propose a novel model (C
2 DREIF) that utilizes Gaussian graph encoders to handle information, effectively constraining the correlation of information and capturing useful contextual information more accurately. It also employs a Top-down transformer to accurately extract user intents within each domain, taking into account the user's long-term and short-term preferences. Additionally, entropy regularized is applied to enhance contrastive learning and mitigate the impact of randomness caused by negative sample composition., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF