1. Cerebrospinal fluid hypoxanthine, xanthine and uric acid levels may reflect glutamate-mediated excitotoxicity in different neurological diseases.
- Author
-
Stover JF, Lowitzsch K, and Kempski OS
- Subjects
- Adult, Albumins cerebrospinal fluid, Cerebrovascular Disorders metabolism, Chromatography, High Pressure Liquid, Epilepsy metabolism, Female, Humans, L-Lactate Dehydrogenase cerebrospinal fluid, Lactic Acid cerebrospinal fluid, Male, Meningitis, Viral metabolism, Middle Aged, Multiple Sclerosis metabolism, Serum Albumin analysis, Spinal Cord Diseases metabolism, Central Nervous System Diseases metabolism, Glutamic Acid cerebrospinal fluid, Hypoxanthine cerebrospinal fluid, Uric Acid cerebrospinal fluid, Xanthine cerebrospinal fluid
- Abstract
Glutamate-mediated excitotoxicity is associated with adenosine triphosphate (ATP) degradation and generation of oxygen radicals. Hypoxanthine and lactate depict energetic impairment, while xanthine and uric acid reflect activity of radical producing xanthine oxidase. Cerebrospinal fluid (CSF) glutamate, hypoxanthine, lactate, xanthine, and uric acid were investigated in neurological patients. In multiple sclerosis, myelopathy, stroke, epilepsy and viral meningitis glutamate, hypoxanthine, xanthine, and uric acid are increased 2-3-fold compared to controls. Lactate is only elevated in meningitis. Normal lactate dehydrogenase (LDH) levels and absent correlation between the albumin ratio and neurochemical parameters exclude an artificial increase due to cell lysis and barrier damage. Absent correlation between neurochemical parameters within each patient group is most likely related to preserved glial and neuronal uptake mechanisms. CSF hypoxanthine, xanthine, and uric acid levels appear superior to lactate in reflecting glutamate-mediated excitotoxicity in neurological patients.
- Published
- 1997
- Full Text
- View/download PDF