9 results on '"Koricheva, J"'
Search Results
2. Contrasting effects of tree species and genetic diversity on the leaf-miner communities associated with silver birch.
- Author
-
Barantal S, Castagneyrol B, Durka W, Iason G, Morath S, and Koricheva J
- Subjects
- Animals, Biodiversity, Ecosystem, Finland, Genetic Variation, Betula, Trees
- Abstract
Both species and genetic diversity of plant communities can affect insect herbivores, but a few studies have compared the effects of both diversity levels within the same experimental context. We compared the effects of tree species and genetic diversity on abundance, species richness, and β-diversity of leaf-miner communities associated with silver birch using two long-term forest diversity experiments in Finland where birch trees were planted in monocultures and mixtures of birch genotypes or other trees species. Although both abundance and species richness of leaf miners differed among birch genotypes at the tree level, birch genetic diversity had no significant effect on miner abundance and species richness at the plot level. Instead, birch genetic diversity affected leaf-miner β-diversity with species turnover being higher among trees within genotypic mixtures than among trees within monoclonal plots. In contrast, tree species diversity had a significant negative effect on both leaf-miner abundance and species richness at plot level, but no effect on miner β-diversity. Significant tree species diversity effects on leaf-miner abundance and species richness were found only in plots with high tree density. We have demonstrated that plant species and genetic diversity play important but contrasting roles in structuring associated herbivore communities. Tree species diversity largely affects miner abundance and species richness, whereas tree genetic diversity affects miner β-diversity. These results have important implications for conservation and management of woodlands.
- Published
- 2019
- Full Text
- View/download PDF
3. Do birds see the forest for the trees? Scale-dependent effects of tree diversity on avian predation of artificial larvae.
- Author
-
Muiruri EW, Rainio K, and Koricheva J
- Subjects
- Animals, Biodiversity, Finland, Food Preferences, Herbivory, Larva, Population Density, Birds physiology, Ecosystem, Insecta physiology, Predatory Behavior physiology, Trees physiology
- Abstract
The enemies hypothesis states that reduced insect herbivory in mixed-species stands can be attributed to more effective top-down control by predators with increasing plant diversity. Although evidence for this mechanism exists for invertebrate predators, studies on avian predation are comparatively rare and have not explicitly tested the effects of diversity at different spatial scales, even though heterogeneity at macro- and micro-scales can influence bird foraging selection. We studied bird predation in an established forest diversity experiment in SW Finland, using artificial larvae installed on birch, alder and pine trees. Effects of tree species diversity and densities on bird predation were tested at two different scales: between plots and within the neighbourhood around focal trees. At the neighbourhood scale, birds preferentially foraged on focal trees surrounded by a higher diversity of neighbours. However, predation rates did not increase with tree species richness at the plot level and were instead negatively affected by tree height variation within the plot. The highest probability of predation was observed on pine, and rates of predation increased with the density of pine regardless of scale. Strong tree species preferences observed may be due to a combination of innate bird species preferences and opportunistic foraging on profitable-looking artificial prey. This study therefore finds partial support for the enemies hypothesis and highlights the importance of spatial scale and focal tree species in modifying trophic interactions between avian predators and insect herbivores in forest ecosystems.
- Published
- 2016
- Full Text
- View/download PDF
4. Tree species diversity influences herbivore abundance and damage: meta-analysis of long-term forest experiments.
- Author
-
Vehviläinen H, Koricheva J, and Ruohomäki K
- Subjects
- Animals, Population Density, Time Factors, Trees parasitology, Biodiversity, Feeding Behavior physiology, Insecta physiology, Trees classification, Trees physiology
- Abstract
Plant monocultures are commonly believed to be more susceptible to herbivore attacks than stands composed of several plant species. However, few studies have experimentally tested the effects of tree species diversity on herbivory. In this paper, we present a meta-analysis of uniformly collected data on insect herbivore abundance and damage on three tree species (silver birch, black alder and sessile oak) from seven long-term forest diversity experiments in boreal and temperate forest zones. Our aim was to compare the effects of forest diversity on herbivores belonging to different feeding guilds and inhabiting different tree species. At the same time we also examined the variation in herbivore responses due to tree age and sampling period within the season, the effects of experimental design (plot size and planting density) and the stability of herbivore responses over time. Herbivore responses varied significantly both among insect feeding guilds and among host tree species. Among insect feeding guilds, only leaf miner densities were consistently lower and less variable in mixed stands as compared to tree monocultures regardless of the host tree species. The responses of other herbivores to forest diversity depended largely on host tree species. Insect herbivory on birch was significantly lower in mixtures than in birch monocultures, whereas insect herbivory on oak and alder was higher in mixtures than in oak and alder monocultures. The effects of tree species diversity were also more pronounced in older trees, in the earlier part of the season, at larger plots and at lower planting density. Overall our results demonstrate that forest diversity does not generally and uniformly reduce insect herbivory and suggest instead that insect herbivore responses to forest diversity are highly variable and strongly dependent on the host tree species and other stand characteristics as well as on the type of the herbivore.
- Published
- 2007
- Full Text
- View/download PDF
5. Delayed induced responses of birch glandular trichomes and leaf surface lipophilic compounds to mechanical defoliation and simulated winter browsing.
- Author
-
Valkama E, Koricheva J, Ossipov V, Ossipova S, Haukioja E, and Pihlaja K
- Subjects
- Animals, Aphids physiology, Betula genetics, Betula parasitology, Genotype, Physical Stimulation, Time Factors, Betula physiology, Feeding Behavior, Plant Leaves chemistry, Plant Leaves metabolism, Seasons
- Abstract
Changes in morphology and chemistry of leaf surface in response to herbivore damage may increase plant resistance to subsequent herbivore attack; however, there is lack of studies on induced responses of glandular trichomes and their exudates in woody plants and on effects of these changes on herbivores. We studied delayed induced responses in leaf surface traits of five clones of silver birch (Betula pendula Roth) subjected to various types of mechanical defoliation and simulated winter browsing. Glandular trichome density and concentrations of the majority of surface lipophilic compounds increased in trees defoliated during the previous summer. This induced response was systemic, since control branches in branch defoliated trees responded to the treatments similarly to defoliated branches, but differently from control trees. In contrast to defoliation treatments, simulated winter browsing reduced glandular trichome density on the following summer and had fewer effects on individual surface lipophilic compounds. Moreover, constitutive density of glandular trichomes was negatively correlated with induced total amount of lipophilic compounds per trichome, indicating a trade-off between constitutive and induced resistance in silver birch. Induced changes in leaf surface traits had no significant effect on leaf damage by chewers, miners and gall mites, but increased susceptibility of birch trees to aphids. However, leaf damage by chewers, miners and gall mites in defoliated (but not in control) trees was correlated with concentrations of some fatty acids and triterpenoids, although the direction of relationships varied among herbivore species. This indicates that induction of surface lipophilic compounds may influence birch resistance to herbivores. Our study thus demonstrated both specificity of elicitation of induced responses of birch leaf surface traits by different types of damage and specificity of the effects of these responses on different types of herbivores.
- Published
- 2005
- Full Text
- View/download PDF
6. Testing the enemies hypothesis in forest stands: the important role of tree species composition.
- Author
-
Riihimäki J, Kaitaniemi P, Koricheva J, and Vehviläinen H
- Subjects
- Analysis of Variance, Animals, Ants physiology, Finland, Larva parasitology, Larva physiology, Moths parasitology, Predatory Behavior physiology, Spiders physiology, Survival Analysis, Ecosystem, Models, Biological, Moths physiology, Trees physiology
- Abstract
Numerous studies conducted in agro-ecosystems support the enemies hypothesis, which states that predators and parasites are more efficient in controlling pest densities in polycultures than in monocultures. Few similar studies, however, have been conducted in forest ecosystems, and we do not yet have evidence as to whether the enemies hypothesis holds true in forests. In a 2-year study, we investigated whether the survival of autumnal moth ( Epirrita autumnata) larvae and pupae differs between silver birch monocultures and two-species mixtures of birch with black alder, Norway spruce and Scots pine. We placed young larvae on birch saplings and monitored their survival until the end of the larval period, when we checked whether they had been parasitized. After the larvae had pupated, pupal survival was tested in a field trial. In 2002, the larvae disappeared earlier and their overall survival was lower in birch-pine mixtures than in other stand types. In 2003, survival probability was lowest in birch-pine stands only during the first week and there were no differences between stands in overall survival. Larval parasitism was not affected by tree species composition. Pupal weight and pupal survival were likewise not affected by stand type. Among the predators, wood ants were more abundant on birches growing in birch-pine mixtures than in other stand types probably because colonies of myrmecophilic aphids were common on pines. In contrast, spider numbers did not differ between stand types. Ant exclusion by means of a glue ring around the birch trunk increased larval survival, indicating that ants are important predators of the autumnal moth larvae; differences in larval survival between stands are probably due to differential ant predation. Our results provide only partial support for the enemies hypothesis, and suggest that it is both tree species composition and species diversity which affect herbivore survival and predation.
- Published
- 2005
- Full Text
- View/download PDF
7. Seasonal changes in birch leaf chemistry: are there trade-offs between leaf growth and accumulation of phenolics?
- Author
-
Riipi M, Ossipov V, Lempa K, Haukioja E, Koricheva J, Ossipova S, and Pihlaja K
- Abstract
Several plant-herbivore hypotheses are based on the assumption that plants cannot simultaneously allocate resources to growth and defence. We studied seasonal patterns in allocation to growth and putatively defensive compounds by monitoring several chemical and physical traits in the leaves of mountain birch from early June (budburst) to late September (leaf senescence). We found significant seasonal changes in all measured characteristics, both in terms of concentrations (mg g
-1 ) and amounts (mg leaf-1 ). Changes were very rapid in the spring, slow in the middle of the season, and there was another period of fast changes in the senescing leaves. Co-occurring changes in physical leaf traits and concentrations of several compounds indicated a seasonal decline in foliage suitability for herbivores. Concentrations of protein and free amino acids declined through the growing season whereas individual sugars showed variable seasonal patterns. The seasonal trends of phenolic groups differed drastically: concentrations of soluble proanthocyanidins increased through the season, whereas cell wall-bound proanthocyanidins, gallotannins and flavonoid glycosides declined after an initial increase in young leaves. We failed to find proof that the seasonal accumulation of phenolics would have been seriously compromised by leaf or shoot growth, as assumed by the growth/differentiation balance hypothesis and the protein competition model hypothesis. On the contrary, there was a steady increase in the total amount of phenolics per leaf even during the most active leaf growth.- Published
- 2002
- Full Text
- View/download PDF
8. Numerical responses of different trophic groups of invertebrates to manipulations of plant diversity in grasslands.
- Author
-
Koricheva J, Mulder CP, Schmid B, Joshi J, and Huss-Danell K
- Abstract
We studied the effects of plant diversity on abundance of invertebrate herbivores, parasitoids and predators in two grassland communities (one in Switzerland and one in Sweden) in which plant species richness and functional diversity have been experimentally manipulated. Among herbivores, the abundance of only the most sessile and specialised groups (leafhoppers and wingless aphids) was affected by plant diversity. At both sites, numbers of leafhoppers in sweep net samples showed a linear, negative relationship with plant species number whereas numbers of wingless aphids in suction samples increased with the number of plant functional groups (grasses, legumes, and non-legume forbs) present in the plot. Activity of carabid beetles and spiders (as revealed by pitfall catches) and the total number of predators in pitfalls at the Swiss site decreased linearly with increases in the number of plant species and plant functional groups. Abundance of more specialised enemies, hymenopteran parasitoids, was not affected by the manipulations of plant diversity. Path analysis and analysis of covariance indicated that plant diversity effects on invertebrate abundance were mostly indirect and mediated by changes in plant biomass and cover. At both sites, plant species composition (i.e. the identity of plant species in a mixture) affected numbers of most of the examined groups of invertebrates and was, therefore, a more important determinant of invertebrate abundance in grasslands than plant species richness per se or the number of plant functional groups. The presence of legumes in a mixture was especially important and led to higher numbers of most invertebrate groups. The similarity of invertebrate responses to plant diversity at the two study sites indicates that general patterns in abundance of different trophic groups can be detected across plant diversity gradients under different environmental conditions.
- Published
- 2000
- Full Text
- View/download PDF
9. Interpreting phenotypic variation in plant allelochemistry: problems with the use of concentrations.
- Author
-
Koricheva J
- Abstract
Ecologists often use concentrations of defensive compounds as measures of plant allocation to defence and/or allelochemical production. I demonstrate that this practice may lead to erroneous conclusions because plants produce and allocate molecules (quantities) of compounds whereas concentrations reflect the distribution of these quantities in plant tissues and are, therefore, functions of plant biomass. As a tool for distinguishing between shifts in allelochemical production versus changes in plant biomass in determining allelochemical concentrations, I suggest using a technique known as graphical vector analysis (GVA) which has been developed for diagnosing nutrient limitations in forest stands, but has seldom been applied by researchers studying plant allelochemicals. I used data from several published studies to demonstrate how GVA can be applied to interpret ontogenetic and environmental effects on allelochemical levels and to compare the results obtained for different allelochemical types, plant species, treatments and experiments. These examples show that changes in plant biomass per se are an important source of variation in allelochemical concentrations and, therefore, concentration data can be easily misinterpreted if changes in absolute content and plant biomass are not considered simultaneously. Because studies reporting variation in allelochemical concentrations have been considered as tests for general theories of plant chemical defence, evidence in support of or against these theories should be re-examined using multivariate techniques such as analysis of covariance, allometric analysis and GVA.
- Published
- 1999
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.