1. Thio-barbiturate-derived compounds are novel antioxidants to prevent LPS-induced inflammation in the liver
- Author
-
Yun Jung Park, Ji Won Jeong, Dae Hyun Kim, Bonggi Lee, Pusoon Chun, Hyerim Kim, Hye Jin An, Kyoung Mi Moon, Hae Young Chung, Ji Young Park, Jin Yeul Ma, Young Mi Ha, Won Kyung Cho, Hyung Ryong Moon, Eun Kyeong Lee, Min Jo Kim, and Eunok Im
- Subjects
0301 basic medicine ,antioxidant ,compound 2d ,Lipopolysaccharide ,Inflammation ,Pharmacology ,medicine.disease_cause ,03 medical and health sciences ,chemistry.chemical_compound ,medicine ,oxidative stress ,PTEN ,Protein kinase B ,chemistry.chemical_classification ,Reactive oxygen species ,biology ,business.industry ,Nitric oxide synthase ,030104 developmental biology ,Oncology ,chemistry ,inflammation ,Immunology ,biology.protein ,Cyclooxygenase ,compound 2l ,medicine.symptom ,business ,Oxidative stress ,Research Paper - Abstract
// Kyoung Mi Moon 1, 5, * , Bonggi Lee 1, 5, * , Ji Won Jeong 1 , Dae Hyun Kim 1 , Yun Jung Park 2 , Hye Rim Kim 2 , Ji Young Park 2 , Min Jo Kim 1 , Hye Jin An 1 , Eun Kyeong Lee 1 , Young Mi Ha 3 , Eunok Im 1 , Pusoon Chun 4 , Jin Yeul Ma 5 , Won-Kyung Cho 5 , Hyung Ryong Moon 2 and Hae Young Chung 1 1 Molecular Inflammation Research Center for Aging Intervention, College of Pharmacy, Pusan National University, Busan, Korea 2 Laboratory of Medicinal Chemistry, College of Pharmacy, Pusan National University, Busan, Republic of Korea 3 Department of Chemistry, Dong-A University, Busan, Republic of Korea 4 College of Pharmacy, Inje University, Inje-ro, Gyeongnam, Korea 5 Korean Medicine Application Center, Korea Institute of Oriental Medicine, Daegu, Republic of Korea * These authors have contributed equally to this work Correspondence to: Hae Young Chung, email: hyjung@pusan.ac.kr Hyung Ryong Moon, email: mhr108@pusan.ac.kr Keywords: oxidative stress, antioxidant, compound 2d, compound 2l, inflammation Received: May 24, 2017 Accepted: July 12, 2017 Published: October 10, 2017 ABSTRACT Liver inflammation is closely associated with metabolic syndrome. Oxidative stress plays a synergistic role in inflammation by activating nuclear factor kappa B (NF-κB) signaling in the liver. Therefore, substantial efforts have been made to develop compounds that inhibit the generation of oxidative stress and activation of NF-κB. We synthesized twenty-six novel 5-(substituted benzyl)-2-oxo- and 5-(substituted benzyl)-2-thioxo-dihydropyrimidine-4,6(1 H ,5 H )-dione derivatives for the development of potential antioxidants and examined their biological activities in vitro and in vivo . Thio-barbiturate-derived compounds 5-[4-hydroxy-3-methoxybenzy]-2-thioxodihydropyrimidine-4,6[1 H ,5 H ]-dione (2d) and 5-[4-hydroxy-3,5-methoxybenzy]-2-thioxodihydropyrimidine-4,6[1 H ,5 H ]-dione (2l) had the strongest inhibitory effect on reactive oxygen species and peroxynitrite generation in vitro . Furthermore, oral administration of compounds 2d and 2l in mice notably suppressed lipopolysaccharide (LPS)-induced oxidative stress and NF-κB activation in the liver. Because macrophages play an essential role in liver inflammation, we investigated the effects of these compounds on inflammatory signaling in LPS-induced RAW264.7 macrophages. LPS-induced NF-κB activation and protein expression of cyclooxygenase 2 and inducible nitric oxide synthase were inhibited by pretreatment of these compounds in macrophages. In parallel with this finding, the phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and AKT signalings, which are upstream activators of p65, were decreased by these compounds in macrophages. Our study suggests that compounds 2d and 2l inhibit oxidative stress and NF-кB-mediated inflammation, at least partially, through suppressing PTEN/AKT signaling. Therefore, these compounds may be useful as therapeutic agents for the amelioration of inflammatory diseases.
- Published
- 2017
- Full Text
- View/download PDF