Tumor induced angiogenesis is responsible for the nutrition of the growing tumor and can also increase the probability of hematogenous tumor dissemination. Data obtained from morphological analysis of tumor angiogenesis can contribute to the development of new anti-angiogenic therapies. Based on in vitro and in vivo observations several models of angiogenesis were introduced, explaining the mechanism of lumen formation and the timing of basement membrane depositon. (1) Lumen is formed either by cell body curving or by fusion of intracellular vacuoles of nonpolarized endothelial cells. New basement membrane is deposited after lumen formation. (2) Slit-like lumen is immediately formed by migrating polarized endothelial cells. Basement membrane is continuously deposited during endothelial cell migration, only cellular processes of the endothelial cell migrating on the tip of the growing capillary are free of deposited basement membrane material. (3) Development of transluminal bridges in larger vessels a process called intussusceptive growth leads to the division of the vessels. These models, however, describe angiogenesis in tissues rich in connective tissue. Different processes of angiogenesis take place in organs such as liver, lungs, adrenals, which are the most frequent sites of metastasis having high vessel density without sufficient space for capillary sprouting. In the case of liver metastases of Lewis lung carcinoma the proliferation of endothelial cells was elicited only by direct contact between tumor and endothelial cells, leading to the development of large convoluted vessels inside the metastases. These vessels were continuous with the sinusoidal system, suggesting that these metastases have dual blood supply. This observation, among others, is in contrast to the generally accepted view that liver tumors have arterial blood supply. The increasing number of data demonstrating the dual or venous blood supply of liver metastases should be taken into consideration in the therapy of liver metastasis.