6 results on '"Hellin, P."'
Search Results
2. DMI fungicide resistance in Zymoseptoria tritici is unlinked to geographical origin and genetic background: a case study in Europe.
- Author
-
Oreiro EG, Samils B, Kildea S, Heick T, Hellin P, Legrève A, Rodemann B, Berg G, Jørgensen LN, Friberg H, Berlin A, Zhan J, and Andersson B
- Abstract
Background: The hemibiotrophic fungus Zymoseptoria tritici causing Septoria tritici blotch (STB), is a devastating foliar pathogen of wheat worldwide. A common group of fungicides used to control STB are the demethylation inhibitors (DMIs). DMI fungicides restrict fungal growth by inhibiting the sterol 14-α-demethylase, a protein encoded by CYP51 gene and essential for maintaining fungal cell permeability. However, the adaptation of Z. tritici populations in response to intensive and prolonged DMI usage has resulted in a gradual shift towards reduced sensitivity to this group of fungicides. In this study, 311 isolates were collected pre-treatment from nine wheat-growing regions in Europe in 2019. These isolates were analysed by high-throughput amplicon-based sequencing of nine housekeeping genes and the CYP51 gene., Results: Analyses based on housekeeping genes and the CYP51 gene revealed a lack of population structure in Z. tritici samples irrespective of geographical origin. Minimum spanning network (MSN) analysis showed clustering of multilocus genotypes (MLGs) based on CYP51 haplotypes, indicating an effect of selection due to DMI fungicide use. The majority of the haplotypes identified in this study have been reported previously. The diversity and frequencies of mutations varied across regions., Conclusion: Using a high-throughput amplicon-sequencing approach, we found several mutations in the CYP51 gene combined in different haplotypes that are likely to cause fungicide resistance. These mutations occurred irrespective of genetic background or geographical origin. Overall, these results contribute to the development of effective and sustainable risk monitoring for DMI fungicide resistance. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry., (© 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.)
- Published
- 2024
- Full Text
- View/download PDF
3. Mefentrifluconazole sensitivity amongst European Zymoseptoria tritici populations and potential implications for its field efficacy.
- Author
-
Kildea S, Hellin P, Heick TM, Byrne S, and Hutton F
- Subjects
- Azoles, Plant Diseases, Ascomycota genetics, Fungicides, Industrial pharmacology, Fluconazole analogs & derivatives
- Abstract
Background: Septoria tritici blotch caused by Zymoseptoria tritici continues to be one of the most economically destructive diseases of winter wheat in north-western Europe. Control is heavily reliant on the application of fungicides, in particular those belonging to the azole group. Here we describe the sensitivity of European Z. tritici populations to the novel azole mefentrifluconazole and the analysis of associated mechanisms of resistance., Results: A wide range of sensitivity to mefentrifluconazole was observed amongst the Z. tritici collections examined, with strong cross-resistances also observed between mefentrifluconazole, difenoconazole and tebuconazole. Overall, the Irish population displayed the lowest sensitivity to all azoles tested. Further detailed analysis of the Irish population in 2021 demonstrated differences in sensitivity occurred between sampling sites, with these differences associated with the frequencies of key resistance mechanisms (CYP51 alterations and MFS1 promoter inserts linked to overexpression). Under glasshouse conditions reductions in the efficacy of mefentrifluconazole were observed towards those strains exhibiting the lowest in vitro sensitivities., Conclusions: This study demonstrates that a large range of sensitivity to mefentrifluconazole exists in European Z. tritici populations. Those strains exhibiting the lowest sensitivity to the azoles tested had the most complex CYP51 haplotypes in combination with the 519 bp insert, associated with enhanced activity of MFS1. The future use of mefentrifluconazole should take these findings into consideration to minimise the selection of these strains. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry., (© 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.)
- Published
- 2024
- Full Text
- View/download PDF
4. Baseline sensitivity of European Zymoseptoria tritici populations to the complex III respiration inhibitor fenpicoxamid.
- Author
-
Kildea S, Hellin P, Heick TM, and Hutton F
- Subjects
- Ascomycota, Chlorides, Electron Transport Complex III, Lactones, Plant Diseases, Pyridines, Quinones, Respiration, Fungicides, Industrial pharmacology
- Abstract
Background: Fenpicoxamid is a recently developed fungicide belonging to the quinone inside inhibitor (QiI) group. This is the first fungicide within this group to be active against the Zymoseptoria tritici, which causes Septoria tritici blotch on wheat. The occurrence of pre-existing resistance mechanisms was monitored, using sensitivity assays and Illumina sequencing, in Z. tritici populations sampled in multiple European countries before the introduction of fenpicoxamid., Results: Although differences in sensitivity to all three fungicides tested (fenpicoxamid, fentin chloride and pyraclostrobin) existed between the isolate collections, no alterations associated with QiI resistance were detected. Among the isolates, a range in sensitivity to fenpicoxamid was observed (ratio between most sensitive/least sensitive = 53.1), with differences between the most extreme isolates when tested in planta following limited fenpicoxamid treatment. Sensitivity assays using fentin chloride suggest some of the observed differences in fenpicoxamid sensitivity are associated with multi-drug resistance. Detailed monitoring of the wider European population using Illumina-based partial sequencing of the Z. tritici also only detected the presence of G143A, with differences in frequencies of this alteration observed across the region., Conclusions: This study provides a baseline sensitivity for European Z. tritici populations to fenpicoxamid. Target-site resistance appears to be limited or non-existing in European Z. tritici populations prior to the introduction of fenpicoxamid. Non-target site resistance mechanisms exist, but their impact in the field is predicted to be limited. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry., (© 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.)
- Published
- 2022
- Full Text
- View/download PDF
5. Spatio-temporal distribution of DMI and SDHI fungicide resistance of Zymoseptoria tritici throughout Europe based on frequencies of key target-site alterations.
- Author
-
Hellin P, Duvivier M, Heick TM, Fraaije BA, Bataille C, Clinckemaillie A, Legrève A, Jørgensen LN, Andersson B, Samils B, Rodemann B, Berg G, Hutton F, Garnault M, El Jarroudi M, Couleaud G, and Kildea S
- Subjects
- Ascomycota, Europe, Plant Diseases, Succinate Dehydrogenase genetics, Succinic Acid, Triazoles, Fungicides, Industrial pharmacology
- Abstract
Background: Over the past decade, demethylation inhibitor (DMI) and succinate dehydrogenase inhibitor (SDHI) fungicides have been extensively used to control to septoria tritici blotch, caused by Zymoseptoria tritici on wheat. This has led to the development and selection of alterations in the target-site enzymes (CYP51 and SDH, respectively)., Results: Taking advantage of newly and previously developed qPCR assays, the frequency of key alterations associated with DMI (CYP51-S524T) and SDHI (SDHC-T79N/I, C-N86S and C-H152R) resistance was assessed in Z. tritici-infected wheat leaf samples collected from commercial crops (n = 140) across 14 European countries prior to fungicide application in the spring of 2019. This revealed the presence of a West to East gradient in the frequencies of the most common key alterations conferring azole (S524T) and SDHI resistance (T79N and N86S), with the highest frequencies measured in Ireland and Great Britain. These observations were corroborated by sequencing (CYP51 and SDH subunits) and sensitivity phenotyping (prothioconazole-desthio and fluxapyroxad) of Z. tritici isolates collected from a selection of field samples. Additional sampling made at the end of the 2019 season confirmed the continued increase in frequency of the targeted alterations. Investigations on historical leaf DNA samples originating from different European countries revealed that the frequency of all key alterations (except C-T79I) has been gradually increasing over the past decade., Conclusion: Whilst these alterations are quickly becoming dominant in Ireland and Great Britain, scope still exists to delay their selection throughout the wider European population, emphasizing the need for the implementation of fungicide antiresistance measures. © 2021 Society of Chemical Industry., (© 2021 Society of Chemical Industry.)
- Published
- 2021
- Full Text
- View/download PDF
6. Sensitivity of Fusarium culmorum to triazoles: impact of trichothecene chemotypes, oxidative stress response and genetic diversity.
- Author
-
Hellin P, Scauflaire J, Van Hese V, Munaut F, and Legrève A
- Subjects
- Fusarium genetics, Fusarium metabolism, Genetic Variation, Oxidative Stress, Trichothecenes biosynthesis, Fungicides, Industrial pharmacology, Fusarium drug effects, Triazoles pharmacology
- Abstract
Background: Fusarium culmorum is a fungal pathogen occurring worldwide on various weeds and important crops. Triazoles have been shown to be the most effective fungicide for managing Fusarium spp., but little is known about their specific activity on F. culmorum., Results: The sensitivity of 107 F. culmorum strains to triazoles was assessed using microtitre plate assays. The EC
50 values ranged from 0.14 to 1.53 mg L-1 for tebuconazole and from 0.25 to 2.47 mg L-1 for epoxiconazole. Cross-resistance to both azoles was found (r = 0.61). F. culmorum appeared to be significantly more sensitive than F. graminearum or F. cerealis. No increase in the mean EC50 was observed over time, which might be related to an unfavourable fitness cost, measured here as fungal growth. On average, nivalenol-producing strains of F. culmorum were significantly more resistant than deoxynivalenol-producing strains. The relationship between resistance and chemotype-dependent adaptation to oxidative stress was investigated, but remained unclear. No link between inter-simple sequence repeat (ISSR) genetic diversity and triazole resistance could be established., Conclusion: Fungicide use might not be a driving force in the evolution of F. culmorum, and the benefit of a resistance trait probably does not outweigh its costs. © 2016 Society of Chemical Industry., (© 2016 Society of Chemical Industry.)- Published
- 2017
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.