1. Physicochemical properties of pore residues predict activation gating of CaV1.2: A correlation mutation analysis
- Author
-
Stanislav Beyl, Anna Stary-Weinzinger, Michaela Kudrnac, Steffen Hering, Annette Hohaus, Waheed Shabbir, Eugen Timin, and Katrin Depil
- Subjects
Calcium Channels, L-Type ,Physiology ,Stereochemistry ,Clinical Biochemistry ,DNA Mutational Analysis ,Biophysics ,Pore stability ,Gating ,Cav1.2 ,Accessible surface area ,03 medical and health sciences ,0302 clinical medicine ,Activation determinants ,Physiology (medical) ,Side chain ,Humans ,Amino Acid Sequence ,Peptide sequence ,Cells, Cultured ,030304 developmental biology ,chemistry.chemical_classification ,0303 health sciences ,Amino acid descriptors ,Voltage-dependent calcium channel ,biology ,030302 biochemistry & molecular biology ,Amino acid ,Calcium channels ,chemistry ,Amino Acid Substitution ,biology.protein ,Thermodynamics ,Leucine ,Hydrophobic and Hydrophilic Interactions ,Ion Channel Gating ,030217 neurology & neurosurgery ,Ion Channels, Receptors and Transporters - Abstract
Single point mutations in pore-forming S6 segments of calcium channels may transform a high-voltage-activated into a low-voltage-activated channel, and resulting disturbances in calcium entry may cause channelopathies (Hemara-Wahanui et al., Proc Natl Acad Sci U S A 102(21):7553–7558, 16). Here we ask the question how physicochemical properties of amino acid residues in gating-sensitive positions on S6 segments determine the threshold of channel activation of CaV1.2. Leucine in segment IS6 (L434) and a newly identified activation determinant in segment IIIS6 (G1193) were mutated to a variety of amino acids. The induced leftward shifts of the activation curves and decelerated current activation and deactivation suggest a destabilization of the closed and a stabilisation of the open channel state by most mutations. A selection of 17 physicochemical parameters (descriptors) was calculated for these residues and examined for correlation with the shifts of the midpoints of the activation curve (ΔVact). ΔVact correlated with local side-chain flexibility in position L434 (IS6), with the polar accessible surface area of the side chain in position G1193 (IIIS6) and with hydrophobicity in position I781 (IIS6). Combined descriptor analysis for positions I781 and G1193 revealed that additional amino acid properties may contribute to conformational changes during the gating process. The identified physicochemical properties in the analysed gating-sensitive positions (accessible surface area, side-chain flexibility, and hydrophobicity) predict the shifts of the activation curves of CaV1.2. Electronic supplementary material The online version of this article (doi:10.1007/s00424-010-0885-2) contains supplementary material, which is available to authorized users.
- Published
- 2010