1. Nonequilibrium molecular dynamics method based on coarse-graining formalism: Application to a nonuniform temperature field system
- Author
-
Masayuki, Uranagase and Shuji, Ogata
- Abstract
A nonequilibrium molecular dynamics method is proposed to produce nonequilibrium states flexibly. In this method, virtual points are set in a simulation box, and coarse-grained physical quantities at these points are constrained using Gauss's principle of least constraint. The coarse-grained physical quantities are evaluated by averaging microscopic quantities with an appropriate weight. To obtain the weight to evaluate the coarse-grained physical quantities, a shape function matrix is initially constructed from the particle configuration. This matrix expresses an interpolation of the physical quantities at particle positions from the coarse-grained quantities at the virtual points. Then, a matrix form of the weight is calculated as the Moore-Penrose pseudoinverse matrix for the shape function matrix. This method is applied to constrain the coarse-grained kinetic energy and produce a nonuniform temperature field in the system. The temperature profile at a nonequilibrium steady state depends on the method for constructing the shape function matrix. In particular, a local temperature coincides with the coarse-grained temperature when the shape function matrix is constructed based on a higher-order interpolation.
- Published
- 2021
- Full Text
- View/download PDF