6 results on '"Fabien Portier"'
Search Results
2. Emission of Nonclassical Radiation by Inelastic Cooper Pair Tunneling
- Author
-
P. Joyez, Denis Vion, Y. Mukharsky, Patrice Roche, Bjoern Kubala, Joachim Ankerhold, Fabien Portier, Daniel Esteve, O. Parlavecchio, Mircea Trif, Carles Altimiras, Pascal Simon, M. P. Westig, Max Hofheinz, Service de physique de l'état condensé (SPEC - UMR3680), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Groupe Nano-Electronique (GNE), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Institute for Complex Quantum Systems (ICQ), Universität Ulm - Ulm University [Ulm, Allemagne], Quantronics Group (QUANTRONICS), Laboratoire de Transport Electronique Quantique et Supraconductivité (LaTEQS), PHotonique, ELectronique et Ingénierie QuantiqueS (PHELIQS), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut de Physique Théorique - UMR CNRS 3681 (IPHT), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire de Physique des Solides (LPS), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11), Institut für Theoretische Physik (ITP), Laboratoire de Physique des Solides, Université Paris-Sud, 91405 Orsay, France, Faculté des Sciences d’Orsay, Université Paris-Sud, 91405 Orsay Cedex, France., Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), and ANR-16-CE92-0033,JosePhSCharLi,Du tranpsort électrique quantique à l'optique Quantique: photonique Josephson en régime de couplage fort(2016)
- Subjects
Josephson effect ,Photon ,General Physics and Astronomy ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,Classical limit ,010305 fluids & plasmas ,Superconductivity (cond-mat.supr-con) ,Resonator ,[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph] ,0103 physical sciences ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,010306 general physics ,Quantum tunnelling ,[PHYS.COND.CM-MSQHE]Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall] ,Physics ,Quantum Physics ,Condensed Matter - Mesoscale and Nanoscale Physics ,Condensed Matter - Superconductivity ,[PHYS.COND.CM-S]Physics [physics]/Condensed Matter [cond-mat]/Superconductivity [cond-mat.supr-con] ,Light emission ,Atomic physics ,Cooper pair ,Quantum Physics (quant-ph) ,Microwave - Abstract
International audience; We show that a properly dc-biased Josephson junction in series with two microwave resonators of different frequencies emits photon pairs in the resonators. By measuring auto- and intercorrelations of the power leaking out of the resonators, we demonstrate two-mode amplitude squeezing below the classical limit. This nonclassical microwave light emission is found to be in quantitative agreement with our theoretical predictions, up to an emission rate of 2 billion photon pairs per second.
- Published
- 2017
- Full Text
- View/download PDF
3. Fluctuation-Dissipation Relations of a Tunnel Junction Driven by a Quantum Circuit
- Author
-
Jean René Souquet, Denis Vion, P. Joyez, Carles Altimiras, Olivier Parlavecchio, Daniel Esteve, Inès Safi, Pascal Simon, Fabien Portier, Patrice Roche, Service de physique de l'état condensé (SPEC - UMR3680), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Groupe Nano-Electronique (GNE), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Laboratoire de Physique des Solides (LPS), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11), Quantronics Group (QUANTRONICS), ANR-12-JS04-0006,AnPhoTEQ,Anti Bunching des Photons émis par un QPC(2012), and Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,Admittance ,Condensed Matter - Mesoscale and Nanoscale Physics ,Condensed matter physics ,Coulomb Blockade ,Quantum noise ,FOS: Physical sciences ,General Physics and Astronomy ,Coulomb blockade ,Quantum Noise ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,Noise (electronics) ,Tunnel junction ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,Superconducting tunnel junction ,[PHYS.COND.CM-MSQHE]Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall] ,Quantum fluctuation ,Fluctuation-Dissipation relation ,DC bias - Abstract
We derive fluctuation-dissipation relations for a tunnel junction driven by a high impedance microwave resonator, displaying strong quantum fluctuations. We find that the fluctuation-dissipation relations derived for classical forces hold, provided the effect of the circuit's quantum fluctuations is incorporated into a modified non-linear $I(V)$ curve. We also demonstrate that all quantities measured under a coherent time dependent bias can be reconstructed from their dc counterpart with a photo-assisted tunneling relation. We confirm these predictions by implementing the circuit and measuring the dc current through the junction, its high frequency admittance and its current noise at the frequency of the resonator., Comment: Publisehd as Physical Review Letters, 114, 126801
- Published
- 2015
- Full Text
- View/download PDF
4. Bright Side of the Coulomb Blockade
- Author
-
Patrice Roche, Quentin Baudouin, Denis Vion, Patrice Bertet, Max Hofheinz, Daniel Esteve, P. Joyez, and Fabien Portier
- Subjects
Josephson effect ,Pi Josephson junction ,Physics ,Photon ,Condensed matter physics ,Tunnel junction ,Condensed Matter::Superconductivity ,General Physics and Astronomy ,Coulomb blockade ,Superconducting tunnel junction ,Biasing ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,Quantum tunnelling - Abstract
The dynamical Coulomb blockade (DCB) of tunneling is a quantum phenomenon in which tunneling of charge through a small tunnel junction is modified by its electromagnetic environment [1‐4]. This environment is described as an impedance in series with the tunnel element [see Fig. 1(a)]. The sudden charge transfer associated with tunneling can generate photons in the electromagnetic modes of the environment. In a normal metal tunnel junction, biased at voltage V, the energy eV of a tunneling electron can be dissipated both into quasiparticle excitations in the electrodes and into photons. At low temperature energy conservation forbids tunneling processes emitting photons with total energy higher than eV. This suppression reduces the conductance at low bias voltage [1,2,4]. In a Josephson junction, DCB effects are more prominent since at bias voltages smaller than the gap voltage 2� =e quasiparticle excitations cannot take away energy. Therefore, as sketched in Fig. 1(a), the entire energy 2eV of tunneling Cooper pairs has to be transformed into photons in the impedance for a dc current to flow through the junction [3,4]. Experiments have confirmed the predictions of DCB theory for the tunneling current, both in the normal [5‐7] and superconducting case [8,9] but the associated emission of photons into the environment has never been investigated. The aim of this work is to fill this gap by exploring the photonic side of DCB. We do so by embedding a Josephson junction into a well controlled electromagnetic environment provided by a microwave resonator. The resonator in turn leaks photons into an amplifier, allowing us to measure the rate and spectrum of photons emitted by the junction.
- Published
- 2011
- Full Text
- View/download PDF
5. Experimental determination of the statistics of photons emitted by a tunnel junction
- Author
-
Eva Zakka-Bajjani, J. Dufouleur, D. C. Glattli, Patrice Roche, Fabien Portier, N. Coulombel, Service de physique de l'état condensé (SPEC - UMR3680), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Laboratoire Pierre Aigrain (LPA), Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), CNanoIdF-QPCSinPS, Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,Photon ,Condensed Matter - Mesoscale and Nanoscale Physics ,Cross-correlation ,Chaotic ,Hanbury Brown and Twiss effect ,FOS: Physical sciences ,General Physics and Astronomy ,02 engineering and technology ,Electron ,021001 nanoscience & nanotechnology ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,01 natural sciences ,Tunnel junction ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,0103 physical sciences ,Statistics ,Atomic physics ,010306 general physics ,0210 nano-technology ,Microwave ,[PHYS.COND.CM-MSQHE]Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall] ,Voltage - Abstract
We report on a microwave Hanbury-Brown Twiss experiment probing the statistics of GHz photons emitted by a tunnel junction in the shot noise regime at low temperature. By measuring the crosscorrelated fluctuations of the occupation numbers of the photon modes of both detection branches we show that, while the statistics of electrons is Poissonian, the photons obey chaotic statistics. This is observed even for low photon occupation number when the voltage across the junction is close to $h\nu/e$., Comment: Submitted to Phys.Rev.Lett
- Published
- 2009
6. Direct measurement of the coherence length of edge states in the integer quantum Hall regime
- Author
-
Antonella Cavanna, Ulf Gennser, Dominique Mailly, Giancarlo Faini, Patrice Roche, Fabien Portier, and Preden Roulleau
- Subjects
Physics ,Quantum decoherence ,Condensed matter physics ,Condensed Matter - Mesoscale and Nanoscale Physics ,Thermal Hall effect ,General Physics and Astronomy ,FOS: Physical sciences ,Quantum Hall effect ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,Coherence length ,Magnetic field ,Interferometry ,Quantum spin Hall effect ,Quantum mechanics ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,Exponential decay - Abstract
We have determined the finite temperature coherence length of edge states in the Integer Quantum Hall Effect (IQHE) regime. This was realized by measuring the visibility of electronic Mach-Zehnder interferometers of different sizes, at filling factor 2. The visibility shows an exponential decay with the temperature. The characteristic temperature scale is found inversely proportional to the length of the interferometer arm, allowing to define a coherence length $\l_\phi$. The variations of $\l_\phi$ with magnetic field are the same for all samples, with a maximum located at the upper end of the quantum hall plateau. Our results provide the first accurate determination of $\l_\phi$ in the quantum Hall regime., Comment: 4 pages, 4 figures
- Published
- 2007
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.