1. Self-Propulsion of Active Colloids via Ion Release: Theory and Experiments
- Author
-
Samuel Sanchez, Xavier Arqué, Ignacio Pagonabarraga, Marino Arroyo, Marco De Corato, Tania Patiño, Universitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental, and Universitat Politècnica de Catalunya. LACÀN - Mètodes Numèrics en Ciències Aplicades i Enginyeria
- Subjects
gradients ,Materials science ,particle ,General Physics and Astronomy ,Non-equilibrium thermodynamics ,Ionic bonding ,Matemàtiques i estadística::Matemàtica aplicada a les ciències [Àrees temàtiques de la UPC] ,Electrolyte ,01 natural sciences ,symbols.namesake ,Colloid ,0103 physical sciences ,Surface charge ,Colloids ,010306 general physics ,Debye length ,Ion release ,micromotors ,urease ,Col·loides ,Particle physics ,Geofísica ,Condensed Matter::Soft Condensed Matter ,Geophysics ,Chemical physics ,symbols ,Particle ,86 Geophysics [Classificació AMS] ,Física de partícules ,Experiments - Abstract
We study the self-propulsion of a charged colloidal particle that releases ionic species using theory and experiments. We relax the assumptions of thin Debye length and weak nonequilibrium effects assumed in classical phoretic models. This leads to a number of unexpected features that cannot be rationalized considering the classic phoretic framework: an active particle can reverse the direction of motion by increasing the rate of ion release and can propel even with zero surface charge. Our theory predicts that there are optimal conditions for self-propulsion and a novel regime in which the velocity is insensitive to the background electrolyte concentration. The theoretical results quantitatively capture the salt-dependent velocity measured in our experiments using active colloids that propel by decomposing urea via a surface enzymatic reaction.
- Published
- 2019