11 results on '"Sumner, T J"'
Search Results
2. Limits on the High-Energy Gamma and Neutrino Fluxes from the SGR 1806-20 Giant Flare of 27 December 2004 with the AMANDA-II Detector
- Author
-
Achterberg, A., primary, Ackermann, M., additional, Adams, J., additional, Ahrens, J., additional, Andeen, K., additional, Atlee, D. W., additional, Bahcall, J. N., additional, Bai, X., additional, Baret, B., additional, Bartelt, M., additional, Barwick, S. W., additional, Bay, R., additional, Beattie, K., additional, Becka, T., additional, Becker, J. K., additional, Becker, K.-H., additional, Berghaus, P., additional, Berley, D., additional, Bernardini, E., additional, Bertrand, D., additional, Besson, D. Z., additional, Blaufuss, E., additional, Boersma, D. J., additional, Bohm, C., additional, Bolmont, J., additional, Böser, S., additional, Botner, O., additional, Bouchta, A., additional, Braun, J., additional, Burgess, C., additional, Burgess, T., additional, Castermans, T., additional, Chirkin, D., additional, Christy, B., additional, Clem, J., additional, Cowen, D. F., additional, D’Agostino, M. V., additional, Davour, A., additional, Day, C. T., additional, De Clercq, C., additional, Demirörs, L., additional, Descamps, F., additional, Desiati, P., additional, DeYoung, T., additional, Diaz-Velez, J. C., additional, Dreyer, J., additional, Dumm, J. P., additional, Duvoort, M. R., additional, Edwards, W. R., additional, Ehrlich, R., additional, Eisch, J., additional, Ellsworth, R. W., additional, Evenson, P. A., additional, Fadiran, O., additional, Fazely, A. R., additional, Feser, T., additional, Filimonov, K., additional, Fox, B. D., additional, Gaisser, T. K., additional, Gallagher, J., additional, Ganugapati, R., additional, Geenen, H., additional, Gerhardt, L., additional, Goldschmidt, A., additional, Goodman, J. A., additional, Gozzini, R., additional, Grullon, S., additional, Groß, A., additional, Gunasingha, R. M., additional, Gurtner, M., additional, Hallgren, A., additional, Halzen, F., additional, Han, K., additional, Hanson, K., additional, Hardtke, D., additional, Hardtke, R., additional, Harenberg, T., additional, Hart, J. E., additional, Hauschildt, T., additional, Hays, D., additional, Heise, J., additional, Helbing, K., additional, Hellwig, M., additional, Herquet, P., additional, Hill, G. C., additional, Hodges, J., additional, Hoffman, K. D., additional, Hommez, B., additional, Hoshina, K., additional, Hubert, D., additional, Hughey, B., additional, Hulth, P. O., additional, Hultqvist, K., additional, Hundertmark, S., additional, Hülß, J.-P., additional, Ishihara, A., additional, Jacobsen, J., additional, Japaridze, G. S., additional, Jones, A., additional, Joseph, J. M., additional, Kampert, K.-H., additional, Karle, A., additional, Kawai, H., additional, Kelley, J. L., additional, Kestel, M., additional, Kitamura, N., additional, Klein, S. R., additional, Klepser, S., additional, Kohnen, G., additional, Kolanoski, H., additional, Köpke, L., additional, Krasberg, M., additional, Kuehn, K., additional, Landsman, H., additional, Leich, H., additional, Liubarsky, I., additional, Lundberg, J., additional, Madsen, J., additional, Mase, K., additional, Matis, H. S., additional, McCauley, T., additional, McParland, C. P., additional, Meli, A., additional, Messarius, T., additional, Mészáros, P., additional, Miyamoto, H., additional, Mokhtarani, A., additional, Montaruli, T., additional, Morey, A., additional, Morse, R., additional, Movit, S. M., additional, Münich, K., additional, Nahnhauer, R., additional, Nam, J. W., additional, Nießen, P., additional, Nygren, D. R., additional, Ögelman, H., additional, Olbrechts, Ph., additional, Olivas, A., additional, Patton, S., additional, Peña-Garay, C., additional, Pérez de los Heros, C., additional, Piegsa, A., additional, Pieloth, D., additional, Pohl, A. C., additional, Porrata, R., additional, Pretz, J., additional, Price, P. B., additional, Przybylski, G. T., additional, Rawlins, K., additional, Razzaque, S., additional, Refflinghaus, F., additional, Resconi, E., additional, Rhode, W., additional, Ribordy, M., additional, Rizzo, A., additional, Robbins, S., additional, Roth, P., additional, Rott, C., additional, Rutledge, D., additional, Ryckbosch, D., additional, Sander, H.-G., additional, Sarkar, S., additional, Schlenstedt, S., additional, Schmidt, T., additional, Schneider, D., additional, Seckel, D., additional, Seo, S. H., additional, Seunarine, S., additional, Silvestri, A., additional, Smith, A. J., additional, Solarz, M., additional, Song, C., additional, Sopher, J. E., additional, Spiczak, G. M., additional, Spiering, C., additional, Stamatikos, M., additional, Stanev, T., additional, Steffen, P., additional, Stezelberger, T., additional, Stokstad, R. G., additional, Stoufer, M. C., additional, Stoyanov, S., additional, Strahler, E. A., additional, Straszheim, T., additional, Sulanke, K.-H., additional, Sullivan, G. W., additional, Sumner, T. J., additional, Taboada, I., additional, Tarasova, O., additional, Tepe, A., additional, Thollander, L., additional, Tilav, S., additional, Toale, P. A., additional, Turčan, D., additional, van Eijndhoven, N., additional, Vandenbroucke, J., additional, Van Overloop, A., additional, Voigt, B., additional, Wagner, W., additional, Walck, C., additional, Waldmann, H., additional, Walter, M., additional, Wang, Y.-R., additional, Wendt, C., additional, Wiebusch, C. H., additional, Wikström, G., additional, Williams, D. R., additional, Wischnewski, R., additional, Wissing, H., additional, Woschnagg, K., additional, Xu, X. W., additional, Yodh, G., additional, Yoshida, S., additional, and Zornoza, J. D., additional
- Published
- 2006
- Full Text
- View/download PDF
3. First Dark Matter Search Results from the LUX-ZEPLIN (LZ) Experiment.
- Author
-
Aalbers J, Akerib DS, Akerlof CW, Al Musalhi AK, Alder F, Alqahtani A, Alsum SK, Amarasinghe CS, Ames A, Anderson TJ, Angelides N, Araújo HM, Armstrong JE, Arthurs M, Azadi S, Bailey AJ, Baker A, Balajthy J, Balashov S, Bang J, Bargemann JW, Barry MJ, Barthel J, Bauer D, Baxter A, Beattie K, Belle J, Beltrame P, Bensinger J, Benson T, Bernard EP, Bhatti A, Biekert A, Biesiadzinski TP, Birch HJ, Birrittella B, Blockinger GM, Boast KE, Boxer B, Bramante R, Brew CAJ, Brás P, Buckley JH, Bugaev VV, Burdin S, Busenitz JK, Buuck M, Cabrita R, Carels C, Carlsmith DL, Carlson B, Carmona-Benitez MC, Cascella M, Chan C, Chawla A, Chen H, Cherwinka JJ, Chott NI, Cole A, Coleman J, Converse MV, Cottle A, Cox G, Craddock WW, Creaner O, Curran D, Currie A, Cutter JE, Dahl CE, David A, Davis J, Davison TJR, Delgaudio J, Dey S, de Viveiros L, Dobi A, Dobson JEY, Druszkiewicz E, Dushkin A, Edberg TK, Edwards WR, Elnimr MM, Emmet WT, Eriksen SR, Faham CH, Fan A, Fayer S, Fearon NM, Fiorucci S, Flaecher H, Ford P, Francis VB, Fraser ED, Fruth T, Gaitskell RJ, Gantos NJ, Garcia D, Geffre A, Gehman VM, Genovesi J, Ghag C, Gibbons R, Gibson E, Gilchriese MGD, Gokhale S, Gomber B, Green J, Greenall A, Greenwood S, van der Grinten MGD, Gwilliam CB, Hall CR, Hans S, Hanzel K, Harrison A, Hartigan-O'Connor E, Haselschwardt SJ, Hernandez MA, Hertel SA, Heuermann G, Hjemfelt C, Hoff MD, Holtom E, Hor JY, Horn M, Huang DQ, Hunt D, Ignarra CM, Jacobsen RG, Jahangir O, James RS, Jeffery SN, Ji W, Johnson J, Kaboth AC, Kamaha AC, Kamdin K, Kasey V, Kazkaz K, Keefner J, Khaitan D, Khaleeq M, Khazov A, Khurana I, Kim YD, Kocher CD, Kodroff D, Korley L, Korolkova EV, Kras J, Kraus H, Kravitz S, Krebs HJ, Kreczko L, Krikler B, Kudryavtsev VA, Kyre S, Landerud B, Leason EA, Lee C, Lee J, Leonard DS, Leonard R, Lesko KT, Levy C, Li J, Liao FT, Liao J, Lin J, Lindote A, Linehan R, Lippincott WH, Liu R, Liu X, Liu Y, Loniewski C, Lopes MI, Lopez Asamar E, López Paredes B, Lorenzon W, Lucero D, Luitz S, Lyle JM, Majewski PA, Makkinje J, Malling DC, Manalaysay A, Manenti L, Mannino RL, Marangou N, Marzioni MF, Maupin C, McCarthy ME, McConnell CT, McKinsey DN, McLaughlin J, Meng Y, Migneault J, Miller EH, Mizrachi E, Mock JA, Monte A, Monzani ME, Morad JA, Morales Mendoza JD, Morrison E, Mount BJ, Murdy M, Murphy ASJ, Naim D, Naylor A, Nedlik C, Nehrkorn C, Neves F, Nguyen A, Nikoleyczik JA, Nilima A, O'Dell J, O'Neill FG, O'Sullivan K, Olcina I, Olevitch MA, Oliver-Mallory KC, Orpwood J, Pagenkopf D, Pal S, Palladino KJ, Palmer J, Pangilinan M, Parveen N, Patton SJ, Pease EK, Penning B, Pereira C, Pereira G, Perry E, Pershing T, Peterson IB, Piepke A, Podczerwinski J, Porzio D, Powell S, Preece RM, Pushkin K, Qie Y, Ratcliff BN, Reichenbacher J, Reichhart L, Rhyne CA, Richards A, Riffard Q, Rischbieter GRC, Rodrigues JP, Rodriguez A, Rose HJ, Rosero R, Rossiter P, Rushton T, Rutherford G, Rynders D, Saba JS, Santone D, Sazzad ABMR, Schnee RW, Scovell PR, Seymour D, Shaw S, Shutt T, Silk JJ, Silva C, Sinev G, Skarpaas K, Skulski W, Smith R, Solmaz M, Solovov VN, Sorensen P, Soria J, Stancu I, Stark MR, Stevens A, Stiegler TM, Stifter K, Studley R, Suerfu B, Sumner TJ, Sutcliffe P, Swanson N, Szydagis M, Tan M, Taylor DJ, Taylor R, Taylor WC, Temples DJ, Tennyson BP, Terman PA, Thomas KJ, Tiedt DR, Timalsina M, To WH, Tomás A, Tong Z, Tovey DR, Tranter J, Trask M, Tripathi M, Tronstad DR, Tull CE, Turner W, Tvrznikova L, Utku U, Va'vra J, Vacheret A, Vaitkus AC, Verbus JR, Voirin E, Waldron WL, Wang A, Wang B, Wang JJ, Wang W, Wang Y, Watson JR, Webb RC, White A, White DT, White JT, White RG, Whitis TJ, Williams M, Wisniewski WJ, Witherell MS, Wolfs FLH, Wolfs JD, Woodford S, Woodward D, Worm SD, Wright CJ, Xia Q, Xiang X, Xiao Q, Xu J, Yeh M, Yin J, Young I, Zarzhitsky P, Zuckerman A, and Zweig EA
- Abstract
The LUX-ZEPLIN experiment is a dark matter detector centered on a dual-phase xenon time projection chamber operating at the Sanford Underground Research Facility in Lead, South Dakota, USA. This Letter reports results from LUX-ZEPLIN's first search for weakly interacting massive particles (WIMPs) with an exposure of 60 live days using a fiducial mass of 5.5 t. A profile-likelihood ratio analysis shows the data to be consistent with a background-only hypothesis, setting new limits on spin-independent WIMP-nucleon, spin-dependent WIMP-neutron, and spin-dependent WIMP-proton cross sections for WIMP masses above 9 GeV/c^{2}. The most stringent limit is set for spin-independent scattering at 36 GeV/c^{2}, rejecting cross sections above 9.2×10^{-48} cm at the 90% confidence level.
- Published
- 2023
- Full Text
- View/download PDF
4. Results of a Search for Sub-GeV Dark Matter Using 2013 LUX Data.
- Author
-
Akerib DS, Alsum S, Araújo HM, Bai X, Balajthy J, Beltrame P, Bernard EP, Bernstein A, Biesiadzinski TP, Boulton EM, Boxer B, Brás P, Burdin S, Byram D, Carmona-Benitez MC, Chan C, Cutter JE, Davison TJR, Druszkiewicz E, Fallon SR, Fan A, Fiorucci S, Gaitskell RJ, Genovesi J, Ghag C, Gilchriese MGD, Gwilliam C, Hall CR, Haselschwardt SJ, Hertel SA, Hogan DP, Horn M, Huang DQ, Ignarra CM, Jacobsen RG, Jahangir O, Ji W, Kamdin K, Kazkaz K, Khaitan D, Knoche R, Korolkova EV, Kravitz S, Kudryavtsev VA, Lenardo BG, Lesko KT, Liao J, Lin J, Lindote A, Lopes MI, Manalaysay A, Mannino RL, Marangou N, Marzioni MF, McKinsey DN, Mei DM, Moongweluwan M, Morad JA, Murphy ASJ, Naylor A, Nehrkorn C, Nelson HN, Neves F, Oliver-Mallory KC, Palladino KJ, Pease EK, Riffard Q, Rischbieter GRC, Rhyne C, Rossiter P, Shaw S, Shutt TA, Silva C, Solmaz M, Solovov VN, Sorensen P, Sumner TJ, Szydagis M, Taylor DJ, Taylor WC, Tennyson BP, Terman PA, Tiedt DR, To WH, Tripathi M, Tvrznikova L, Utku U, Uvarov S, Velan V, Webb RC, White JT, Whitis TJ, Witherell MS, Wolfs FLH, Woodward D, Xu J, Yazdani K, and Zhang C
- Abstract
The scattering of dark matter (DM) particles with sub-GeV masses off nuclei is difficult to detect using liquid xenon-based DM search instruments because the energy transfer during nuclear recoils is smaller than the typical detector threshold. However, the tree-level DM-nucleus scattering diagram can be accompanied by simultaneous emission of a bremsstrahlung photon or a so-called "Migdal" electron. These provide an electron recoil component to the experimental signature at higher energies than the corresponding nuclear recoil. The presence of this signature allows liquid xenon detectors to use both the scintillation and the ionization signals in the analysis where the nuclear recoil signal would not be otherwise visible. We report constraints on spin-independent DM-nucleon scattering for DM particles with masses of 0.4-5 GeV/c^{2} using 1.4×10^{4} kg day of search exposure from the 2013 data from the Large Underground Xenon (LUX) experiment for four different classes of mediators. This analysis extends the reach of liquid xenon-based DM search instruments to lower DM masses than has been achieved previously.
- Published
- 2019
- Full Text
- View/download PDF
5. First Searches for Axions and Axionlike Particles with the LUX Experiment.
- Author
-
Akerib DS, Alsum S, Aquino C, Araújo HM, Bai X, Bailey AJ, Balajthy J, Beltrame P, Bernard EP, Bernstein A, Biesiadzinski TP, Boulton EM, Brás P, Byram D, Cahn SB, Carmona-Benitez MC, Chan C, Chiller AA, Chiller C, Currie A, Cutter JE, Davison TJR, Dobi A, Dobson JEY, Druszkiewicz E, Edwards BN, Faham CH, Fallon SR, Fiorucci S, Gaitskell RJ, Gehman VM, Ghag C, Gibson KR, Gilchriese MGD, Hall CR, Hanhardt M, Haselschwardt SJ, Hertel SA, Hogan DP, Horn M, Huang DQ, Ignarra CM, Jacobsen RG, Ji W, Kamdin K, Kazkaz K, Khaitan D, Knoche R, Larsen NA, Lee C, Lenardo BG, Lesko KT, Lindote A, Lopes MI, Manalaysay A, Mannino RL, Marzioni MF, McKinsey DN, Mei DM, Mock J, Moongweluwan M, Morad JA, Murphy ASJ, Nehrkorn C, Nelson HN, Neves F, O'Sullivan K, Oliver-Mallory KC, Palladino KJ, Pease EK, Reichhart L, Rhyne C, Shaw S, Shutt TA, Silva C, Solmaz M, Solovov VN, Sorensen P, Stephenson S, Sumner TJ, Szydagis M, Taylor DJ, Taylor WC, Tennyson BP, Terman PA, Tiedt DR, To WH, Tripathi M, Tvrznikova L, Uvarov S, Velan V, Verbus JR, Webb RC, White JT, Whitis TJ, Witherell MS, Wolfs FLH, Xu J, Yazdani K, Young SK, and Zhang C
- Abstract
The first searches for axions and axionlike particles with the Large Underground Xenon experiment are presented. Under the assumption of an axioelectric interaction in xenon, the coupling constant between axions and electrons g_{Ae} is tested using data collected in 2013 with an exposure totaling 95 live days ×118 kg. A double-sided, profile likelihood ratio statistic test excludes g_{Ae} larger than 3.5×10^{-12} (90% C.L.) for solar axions. Assuming the Dine-Fischler-Srednicki-Zhitnitsky theoretical description, the upper limit in coupling corresponds to an upper limit on axion mass of 0.12 eV/c^{2}, while for the Kim-Shifman-Vainshtein-Zhakharov description masses above 36.6 eV/c^{2} are excluded. For galactic axionlike particles, values of g_{Ae} larger than 4.2×10^{-13} are excluded for particle masses in the range 1-16 keV/c^{2}. These are the most stringent constraints to date for these interactions.
- Published
- 2017
- Full Text
- View/download PDF
6. Limits on Spin-Dependent WIMP-Nucleon Cross Section Obtained from the Complete LUX Exposure.
- Author
-
Akerib DS, Alsum S, Araújo HM, Bai X, Bailey AJ, Balajthy J, Beltrame P, Bernard EP, Bernstein A, Biesiadzinski TP, Boulton EM, Brás P, Byram D, Cahn SB, Carmona-Benitez MC, Chan C, Chiller AA, Chiller C, Currie A, Cutter JE, Davison TJR, Dobi A, Dobson JEY, Druszkiewicz E, Edwards BN, Faham CH, Fallon SR, Fiorucci S, Gaitskell RJ, Gehman VM, Ghag C, Gilchriese MGD, Hall CR, Hanhardt M, Haselschwardt SJ, Hertel SA, Hogan DP, Horn M, Huang DQ, Ignarra CM, Jacobsen RG, Ji W, Kamdin K, Kazkaz K, Khaitan D, Knoche R, Larsen NA, Lee C, Lenardo BG, Lesko KT, Lindote A, Lopes MI, Manalaysay A, Mannino RL, Marzioni MF, McKinsey DN, Mei DM, Mock J, Moongweluwan M, Morad JA, Murphy ASJ, Nehrkorn C, Nelson HN, Neves F, O'Sullivan K, Oliver-Mallory KC, Palladino KJ, Pease EK, Reichhart L, Rhyne C, Shaw S, Shutt TA, Silva C, Solmaz M, Solovov VN, Sorensen P, Stephenson S, Sumner TJ, Szydagis M, Taylor DJ, Taylor WC, Tennyson BP, Terman PA, Tiedt DR, To WH, Tripathi M, Tvrznikova L, Uvarov S, Velan V, Verbus JR, Webb RC, White JT, Whitis TJ, Witherell MS, Wolfs FLH, Xu J, Yazdani K, Young SK, and Zhang C
- Abstract
We present experimental constraints on the spin-dependent WIMP-nucleon elastic cross sections from the total 129.5 kg yr exposure acquired by the Large Underground Xenon experiment (LUX), operating at the Sanford Underground Research Facility in Lead, South Dakota (USA). A profile likelihood ratio analysis allows 90% C.L. upper limits to be set on the WIMP-neutron (WIMP-proton) cross section of σ_{n}=1.6×10^{-41} cm^{2} (σ_{p}=5×10^{-40} cm^{2}) at 35 GeV c^{-2}, almost a sixfold improvement over the previous LUX spin-dependent results. The spin-dependent WIMP-neutron limit is the most sensitive constraint to date.
- Published
- 2017
- Full Text
- View/download PDF
7. Charge-Induced Force Noise on Free-Falling Test Masses: Results from LISA Pathfinder.
- Author
-
Armano M, Audley H, Auger G, Baird JT, Binetruy P, Born M, Bortoluzzi D, Brandt N, Bursi A, Caleno M, Cavalleri A, Cesarini A, Cruise M, Danzmann K, de Deus Silva M, Diepholz I, Dolesi R, Dunbar N, Ferraioli L, Ferroni V, Fitzsimons ED, Flatscher R, Freschi M, Gallegos J, García Marirrodriga C, Gerndt R, Gesa L, Gibert F, Giardini D, Giusteri R, Grimani C, Grzymisch J, Harrison I, Heinzel G, Hewitson M, Hollington D, Hueller M, Huesler J, Inchauspé H, Jennrich O, Jetzer P, Johlander B, Karnesis N, Kaune B, Killow CJ, Korsakova N, Lloro I, Liu L, López-Zaragoza JP, Maarschalkerweerd R, Madden S, Mance D, Martín V, Martin-Polo L, Martino J, Martin-Porqueras F, Mateos I, McNamara PW, Mendes J, Mendes L, Moroni A, Nofrarias M, Paczkowski S, Perreur-Lloyd M, Petiteau A, Pivato P, Plagnol E, Prat P, Ragnit U, Ramos-Castro J, Reiche J, Romera Perez JA, Robertson DI, Rozemeijer H, Rivas F, Russano G, Sarra P, Schleicher A, Slutsky J, Sopuerta C, Sumner TJ, Texier D, Thorpe JI, Trenkel C, Vetrugno D, Vitale S, Wanner G, Ward H, Wass PJ, Wealthy D, Weber WJ, Wittchen A, Zanoni C, Ziegler T, and Zweifel P
- Abstract
We report on electrostatic measurements made on board the European Space Agency mission LISA Pathfinder. Detailed measurements of the charge-induced electrostatic forces exerted on free-falling test masses (TMs) inside the capacitive gravitational reference sensor are the first made in a relevant environment for a space-based gravitational wave detector. Employing a combination of charge control and electric-field compensation, we show that the level of charge-induced acceleration noise on a single TM can be maintained at a level close to 1.0 fm s^{-2} Hz^{-1/2} across the 0.1-100 mHz frequency band that is crucial to an observatory such as the Laser Interferometer Space Antenna (LISA). Using dedicated measurements that detect these effects in the differential acceleration between the two test masses, we resolve the stochastic nature of the TM charge buildup due to interplanetary cosmic rays and the TM charge-to-force coupling through stray electric fields in the sensor. All our measurements are in good agreement with predictions based on a relatively simple electrostatic model of the LISA Pathfinder instrument.
- Published
- 2017
- Full Text
- View/download PDF
8. Results from a Search for Dark Matter in the Complete LUX Exposure.
- Author
-
Akerib DS, Alsum S, Araújo HM, Bai X, Bailey AJ, Balajthy J, Beltrame P, Bernard EP, Bernstein A, Biesiadzinski TP, Boulton EM, Bramante R, Brás P, Byram D, Cahn SB, Carmona-Benitez MC, Chan C, Chiller AA, Chiller C, Currie A, Cutter JE, Davison TJ, Dobi A, Dobson JE, Druszkiewicz E, Edwards BN, Faham CH, Fiorucci S, Gaitskell RJ, Gehman VM, Ghag C, Gibson KR, Gilchriese MG, Hall CR, Hanhardt M, Haselschwardt SJ, Hertel SA, Hogan DP, Horn M, Huang DQ, Ignarra CM, Ihm M, Jacobsen RG, Ji W, Kamdin K, Kazkaz K, Khaitan D, Knoche R, Larsen NA, Lee C, Lenardo BG, Lesko KT, Lindote A, Lopes MI, Manalaysay A, Mannino RL, Marzioni MF, McKinsey DN, Mei DM, Mock J, Moongweluwan M, Morad JA, Murphy AS, Nehrkorn C, Nelson HN, Neves F, O'Sullivan K, Oliver-Mallory KC, Palladino KJ, Pease EK, Phelps P, Reichhart L, Rhyne C, Shaw S, Shutt TA, Silva C, Solmaz M, Solovov VN, Sorensen P, Stephenson S, Sumner TJ, Szydagis M, Taylor DJ, Taylor WC, Tennyson BP, Terman PA, Tiedt DR, To WH, Tripathi M, Tvrznikova L, Uvarov S, Verbus JR, Webb RC, White JT, Whitis TJ, Witherell MS, Wolfs FL, Xu J, Yazdani K, Young SK, and Zhang C
- Abstract
We report constraints on spin-independent weakly interacting massive particle (WIMP)-nucleon scattering using a 3.35×10^{4} kg day exposure of the Large Underground Xenon (LUX) experiment. A dual-phase xenon time projection chamber with 250 kg of active mass is operated at the Sanford Underground Research Facility under Lead, South Dakota (USA). With roughly fourfold improvement in sensitivity for high WIMP masses relative to our previous results, this search yields no evidence of WIMP nuclear recoils. At a WIMP mass of 50 GeV c^{-2}, WIMP-nucleon spin-independent cross sections above 2.2×10^{-46} cm^{2} are excluded at the 90% confidence level. When combined with the previously reported LUX exposure, this exclusion strengthens to 1.1×10^{-46} cm^{2} at 50 GeV c^{-2}.
- Published
- 2017
- Full Text
- View/download PDF
9. Improved Limits on Scattering of Weakly Interacting Massive Particles from Reanalysis of 2013 LUX Data.
- Author
-
Akerib DS, Araújo HM, Bai X, Bailey AJ, Balajthy J, Beltrame P, Bernard EP, Bernstein A, Biesiadzinski TP, Boulton EM, Bradley A, Bramante R, Cahn SB, Carmona-Benitez MC, Chan C, Chapman JJ, Chiller AA, Chiller C, Currie A, Cutter JE, Davison TJ, de Viveiros L, Dobi A, Dobson JE, Druszkiewicz E, Edwards BN, Faham CH, Fiorucci S, Gaitskell RJ, Gehman VM, Ghag C, Gibson KR, Gilchriese MG, Hall CR, Hanhardt M, Haselschwardt SJ, Hertel SA, Hogan DP, Horn M, Huang DQ, Ignarra CM, Ihm M, Jacobsen RG, Ji W, Kazkaz K, Khaitan D, Knoche R, Larsen NA, Lee C, Lenardo BG, Lesko KT, Lindote A, Lopes MI, Malling DC, Manalaysay A, Mannino RL, Marzioni MF, McKinsey DN, Mei DM, Mock J, Moongweluwan M, Morad JA, Murphy AS, Nehrkorn C, Nelson HN, Neves F, O'Sullivan K, Oliver-Mallory KC, Ott RA, Palladino KJ, Pangilinan M, Pease EK, Phelps P, Reichhart L, Rhyne C, Shaw S, Shutt TA, Silva C, Solovov VN, Sorensen P, Stephenson S, Sumner TJ, Szydagis M, Taylor DJ, Taylor W, Tennyson BP, Terman PA, Tiedt DR, To WH, Tripathi M, Tvrznikova L, Uvarov S, Verbus JR, Webb RC, White JT, Whitis TJ, Witherell MS, Wolfs FL, Yazdani K, Young SK, and Zhang C
- Abstract
We present constraints on weakly interacting massive particles (WIMP)-nucleus scattering from the 2013 data of the Large Underground Xenon dark matter experiment, including 1.4×10^{4} kg day of search exposure. This new analysis incorporates several advances: single-photon calibration at the scintillation wavelength, improved event-reconstruction algorithms, a revised background model including events originating on the detector walls in an enlarged fiducial volume, and new calibrations from decays of an injected tritium β source and from kinematically constrained nuclear recoils down to 1.1 keV. Sensitivity, especially to low-mass WIMPs, is enhanced compared to our previous results which modeled the signal only above a 3 keV minimum energy. Under standard dark matter halo assumptions and in the mass range above 4 GeV c^{-2}, these new results give the most stringent direct limits on the spin-independent WIMP-nucleon cross section. The 90% C.L. upper limit has a minimum of 0.6 zb at 33 GeV c^{-2} WIMP mass.
- Published
- 2016
- Full Text
- View/download PDF
10. Results on the Spin-Dependent Scattering of Weakly Interacting Massive Particles on Nucleons from the Run 3 Data of the LUX Experiment.
- Author
-
Akerib DS, Araújo HM, Bai X, Bailey AJ, Balajthy J, Beltrame P, Bernard EP, Bernstein A, Biesiadzinski TP, Boulton EM, Bradley A, Bramante R, Cahn SB, Carmona-Benitez MC, Chan C, Chapman JJ, Chiller AA, Chiller C, Currie A, Cutter JE, Davison TJ, de Viveiros L, Dobi A, Dobson JE, Druszkiewicz E, Edwards BN, Faham CH, Fiorucci S, Gaitskell RJ, Gehman VM, Ghag C, Gibson KR, Gilchriese MG, Hall CR, Hanhardt M, Haselschwardt SJ, Hertel SA, Hogan DP, Horn M, Huang DQ, Ignarra CM, Ihm M, Jacobsen RG, Ji W, Kazkaz K, Khaitan D, Knoche R, Larsen NA, Lee C, Lenardo BG, Lesko KT, Lindote A, Lopes MI, Malling DC, Manalaysay A, Mannino RL, Marzioni MF, McKinsey DN, Mei DM, Mock J, Moongweluwan M, Morad JA, Murphy AS, Nehrkorn C, Nelson HN, Neves F, O'Sullivan K, Oliver-Mallory KC, Ott RA, Palladino KJ, Pangilinan M, Pease EK, Phelps P, Reichhart L, Rhyne C, Shaw S, Shutt TA, Silva C, Solovov VN, Sorensen P, Stephenson S, Sumner TJ, Szydagis M, Taylor DJ, Taylor W, Tennyson BP, Terman PA, Tiedt DR, To WH, Tripathi M, Tvrznikova L, Uvarov S, Verbus JR, Webb RC, White JT, Whitis TJ, Witherell MS, Wolfs FL, Yazdani K, Young SK, and Zhang C
- Abstract
We present experimental constraints on the spin-dependent WIMP (weakly interacting massive particle)-nucleon elastic cross sections from LUX data acquired in 2013. LUX is a dual-phase xenon time projection chamber operating at the Sanford Underground Research Facility (Lead, South Dakota), which is designed to observe the recoil signature of galactic WIMPs scattering from xenon nuclei. A profile likelihood ratio analysis of 1.4×10^{4} kg day of fiducial exposure allows 90% C.L. upper limits to be set on the WIMP-neutron (WIMP-proton) cross section of σ_{n}=9.4×10^{-41} cm^{2} (σ_{p}=2.9×10^{-39} cm^{2}) at 33 GeV/c^{2}. The spin-dependent WIMP-neutron limit is the most sensitive constraint to date.
- Published
- 2016
- Full Text
- View/download PDF
11. First results from the LUX dark matter experiment at the Sanford underground research facility.
- Author
-
Akerib DS, Araújo HM, Bai X, Bailey AJ, Balajthy J, Bedikian S, Bernard E, Bernstein A, Bolozdynya A, Bradley A, Byram D, Cahn SB, Carmona-Benitez MC, Chan C, Chapman JJ, Chiller AA, Chiller C, Clark K, Coffey T, Currie A, Curioni A, Dazeley S, de Viveiros L, Dobi A, Dobson J, Dragowsky EM, Druszkiewicz E, Edwards B, Faham CH, Fiorucci S, Flores C, Gaitskell RJ, Gehman VM, Ghag C, Gibson KR, Gilchriese MG, Hall C, Hanhardt M, Hertel SA, Horn M, Huang DQ, Ihm M, Jacobsen RG, Kastens L, Kazkaz K, Knoche R, Kyre S, Lander R, Larsen NA, Lee C, Leonard DS, Lesko KT, Lindote A, Lopes MI, Lyashenko A, Malling DC, Mannino R, McKinsey DN, Mei DM, Mock J, Moongweluwan M, Morad J, Morii M, Murphy AS, Nehrkorn C, Nelson H, Neves F, Nikkel JA, Ott RA, Pangilinan M, Parker PD, Pease EK, Pech K, Phelps P, Reichhart L, Shutt T, Silva C, Skulski W, Sofka CJ, Solovov VN, Sorensen P, Stiegler T, O'Sullivan K, Sumner TJ, Svoboda R, Sweany M, Szydagis M, Taylor D, Tennyson B, Tiedt DR, Tripathi M, Uvarov S, Verbus JR, Walsh N, Webb R, White JT, White D, Witherell MS, Wlasenko M, Wolfs FL, Woods M, and Zhang C
- Abstract
The Large Underground Xenon (LUX) experiment is a dual-phase xenon time-projection chamber operating at the Sanford Underground Research Facility (Lead, South Dakota). The LUX cryostat was filled for the first time in the underground laboratory in February 2013. We report results of the first WIMP search data set, taken during the period from April to August 2013, presenting the analysis of 85.3 live days of data with a fiducial volume of 118 kg. A profile-likelihood analysis technique shows our data to be consistent with the background-only hypothesis, allowing 90% confidence limits to be set on spin-independent WIMP-nucleon elastic scattering with a minimum upper limit on the cross section of 7.6 × 10(-46) cm(2) at a WIMP mass of 33 GeV/c(2). We find that the LUX data are in disagreement with low-mass WIMP signal interpretations of the results from several recent direct detection experiments.
- Published
- 2014
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.