1. Functional conservation and divergence of Gm CHLI genes in polyploid soybean.
- Author
-
Li, Qing, Fang, Chao, Duan, Zongbiao, Liu, Yucheng, Qin, Hao, Zhang, Jixiang, Sun, Peng, Li, Wenbin, Wang, Guodong, and Tian, Zhixi
- Subjects
POLYPLOIDY ,SOYBEAN ,OLIGOMERS ,GENE expression in plants ,PLANT genomes - Abstract
Polyploidy is prevalent in nature. As the fate of duplicated genes becomes more complicated when the encoded proteins function as oligomers, functional investigations into duplicated oligomer-encoding genes in polyploid genomes will facilitate our understanding of how traits are expressed. In this study, we identified Gm CHLI1, a gene encoding the I subunit of magnesium (Mg)-chelatase, which functions in hexamers as responsible for the semi-dominant etiolation phenotype in soybean. Four Gm CHLI copies derived from two polyploidy events were identified in the soybean genome. Further investigation with regard to expression patterns indicated that these four copies have diverged into two pairs; mutation in the other copy of the pair that includes Gm CHLI1 also resulted in a chlorophyll-deficient phenotype. Protein interaction assays showed that these four Gm CHLIs can interact with each other, but stronger interactions were found with mutated subunits. The results indicate that, in polyploidy, deficiency in each copy of duplicated oligomer-encoding genes could result in a mutant phenotype due to hetero-oligomer formation, which is different from the model of allelic dosage or functional redundancy. In addition, we interestingly found an increase in isoflavonoids in the heterozygous etiolated plants, which might be useful for improving soybean seed quality. [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF