1. The Arabidopsis UDP-glycosyltransferase75B1, conjugates abscisic acid and affects plant response to abiotic stresses
- Author
-
Pan Li, Xiao-Yi Jiang, Ting-ting Chen, Bing-Kai Hou, Shu-Man Zhao, Fang-Fei Liu, Dong-Wang Xiao, and Yan-Jie Li
- Subjects
0106 biological sciences ,0301 basic medicine ,Salinity ,Glycosylation ,Osmotic shock ,Arabidopsis ,GUS reporter system ,Germination ,Plant Science ,Sodium Chloride ,Genes, Plant ,01 natural sciences ,Catalysis ,03 medical and health sciences ,chemistry.chemical_compound ,Gene Expression Regulation, Plant ,Osmotic Pressure ,Stress, Physiological ,Genetics ,Arabidopsis thaliana ,Abscisic acid ,Abiotic component ,biology ,Abiotic stress ,Arabidopsis Proteins ,fungi ,food and beverages ,Glycosyltransferases ,General Medicine ,biology.organism_classification ,Plants, Genetically Modified ,Cell biology ,Droughts ,030104 developmental biology ,chemistry ,Glucosyltransferases ,Seedlings ,Agronomy and Crop Science ,010606 plant biology & botany ,Abscisic Acid ,Transcription Factors - Abstract
This study revealed that the Arabidopsis UGT75B1 plays an important role in modulating ABA activity by glycosylation when confronting stress environments. The cellular ABA content and activity can be tightly controlled in several ways, one of which is glycosylation by family 1 UDP-glycosyltransferases (UGTs). Previous analysis has shown UGT75B1 activity towards ABA in vitro. However, the biological role of UGT75B1 remains to be elucidated. Here, we characterized the function of UGT75B1 in abiotic stress responses via ABA glycosylation. GUS assay and qRT-PCR indicated that UGT75B1 is significantly upregulated by adverse conditions, such as osmotic stress, salinity and ABA. Overexpression of UGT75B1 in Arabidopsis leads to higher seed germination rates and seedling greening rates upon exposure to salt and osmotic stresses. In contrast, the big UGT75B1 overexpression plants are more sensitive under salt and osmotic stresses. Additionally, the UGT75B1 overexpression plants showed larger stomatal aperture and more water loss under drought condition, which can be explained by lower ABA levels examined in UGT75B1 OE plants in response to water deficit conditions. Consistently, UGT75B1 ectopic expression leads to downregulation of many ABA-responsive genes under stress conditions, including ABI3, ABI5 newly germinated seedlings and RD29A, KIN1, AIL1 in big plants. In summary, our results revealed that the Arabidopsis UGT75B1 plays an important role in coping with abiotic stresses via glycosylation of ABA.
- Published
- 2018