1. Experimental Progress in the Development of a Metal Foil Pump for DEMO
- Author
-
Yannick Kathage, Alejandro Vazquez Cortes, Stefan Merli, Christian Day, Thomas Giegerich, Stefan Hanke, Juri Igitkhanov, Andreas Schulz, and Matthias Walker
- Subjects
metal foil pump ,direct internal recycling ,superpermeation ,hydrogen separation ,fuel cycle ,Physics ,QC1-999 ,Plasma physics. Ionized gases ,QC717.6-718.8 - Abstract
Experimental findings to contribute to the preliminary design of a metal foil pump for fuel separation in the Direct Internal Recycling loop of the DEMO fusion device are presented. In parametric studies on a small-scale superpermeation experiment with a microwave plasma source and two different metal foil materials, niobium Nb and vanadium V, a substantial increase in permeation with plasma power and with a decrease in pressure was observed. To ease operation in the typical fusion environment, in-situ heating procedures were developed to recover from impurity contamination. The temperature independence of plasma-driven permeation from 600 to 900 °C metal foil temperature was demonstrated. No proof of an isotopic effect for plasma-driven permeation of protium and deuterium could be found. The highest repeatable permeation flux achieved was 6.7 Pa∙m3/(m2∙s) or ~5.5 × 10−3 mol H/(m2∙s). The found compression ratios do safely allow the operation of the metal foil pump using ejector pumps as backing stages for the permeate. In a dedicated experimental setup, the operation of the plasma source in a strong magnetic field was tested. Parametric studies of pressure, power input, magnetic flux density, field gradient and field angle are presented.
- Published
- 2023
- Full Text
- View/download PDF