1. Leveraging pleiotropy for joint analysis of genome-wide association studies with per trait interpretations.
- Author
-
Taraszka K, Zaitlen N, and Eskin E
- Subjects
- Genetic Pleiotropy, Phenotype, Meta-Analysis as Topic, Genome-Wide Association Study methods, Polymorphism, Single Nucleotide genetics
- Abstract
We introduce pleiotropic association test (PAT) for joint analysis of multiple traits using genome-wide association study (GWAS) summary statistics. The method utilizes the decomposition of phenotypic covariation into genetic and environmental components to create a likelihood ratio test statistic for each genetic variant. Though PAT does not directly interpret which trait(s) drive the association, a per trait interpretation of the omnibus p-value is provided through an extension to the meta-analysis framework, m-values. In simulations, we show PAT controls the false positive rate, increases statistical power, and is robust to model misspecifications of genetic effect. Additionally, simulations comparing PAT to three multi-trait methods, HIPO, MTAG, and ASSET, show PAT identified 15.3% more omnibus associations over the next best method. When these associations were interpreted on a per trait level using m-values, PAT had 37.5% more true per trait interpretations with a 0.92% false positive assignment rate. When analyzing four traits from the UK Biobank, PAT discovered 22,095 novel variants. Through the m-values interpretation framework, the number of per trait associations for two traits were almost tripled and were nearly doubled for another trait relative to the original single trait GWAS., Competing Interests: The authors have declared that no competing interests exist., (Copyright: © 2022 Taraszka et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
- Published
- 2022
- Full Text
- View/download PDF