1. Uncertainty and precaution in hunting wolves twice in a year: Reanalysis of Treves and Louchouarn.
- Author
-
Stauffer, Glenn E., Olson, Erik R., Belant, Jerrold L., Stenglein, Jennifer L., Price Tack, Jennifer L., van Deelen, Timothy R., MacFarland, David M., and Roberts, Nathan M.
- Subjects
WOLVES ,MATHEMATICAL errors ,BURDEN of proof ,SPRING ,HUNTING ,DEMOGRAPHIC change ,REPRODUCTION - Abstract
Management of wolves is controversial in many jurisdictions where wolves live, which underscores the importance of rigor, transparency, and reproducibility when evaluating outcomes of management actions. Treves and Louchouarn 2022 (hereafter TL) predicted outcomes for various fall 2021 hunting scenarios following Wisconsin's judicially mandated hunting and trapping season in spring 2021, and concluded that even a zero harvest scenario could result in the wolf population declining below the population goal of 350 wolves specified in the 1999 Wisconsin wolf management plan. TL further concluded that with a fall harvest of > 16 wolves there was a "better than average possibility" that the wolf population size would decline below that 350-wolf threshold. We show that these conclusions are incorrect and that they resulted from mathematical errors and selected parameterizations that were consistently biased in the direction that maximized mortality and minimized reproduction (i.e., positively biased adult mortality, negatively biased pup survival, further halving pup survival to November, negatively biased number of breeding packs, and counting harvested wolves twice among the dead). These errors systematically exaggerated declines in predicted population size and resulted in erroneous conclusions that were not based on the best available or unbiased science. Corrected mathematical calculations and more rigorous parameterization resulted in predicted outcomes for the zero harvest scenario that more closely coincided with the empirical population estimates in 2022 following a judicially prevented fall hunt in 2021. Only in scenarios with simulated harvest of 300 or more wolves did probability of crossing the 350-wolf population threshold exceed zero. TL suggested that proponents of some policy positions bear a greater burden of proof than proponents of other positions to show that "their estimates are accurate, precise, and reproducible". In their analysis, TL failed to meet this standard that they demanded of others. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF