1. Development of novel radiogallium-labeled bone imaging agents using oligo-aspartic acid peptides as carriers.
- Author
-
Kazuma Ogawa, Atsushi Ishizaki, Kenichiro Takai, Yoji Kitamura, Tatsuto Kiwada, Kazuhiro Shiba, and Akira Odani
- Subjects
Medicine ,Science - Abstract
(68)Ga (T 1/2 = 68 min, a generator-produced nuclide) has great potential as a radionuclide for clinical positron emission tomography (PET). Because poly-glutamic and poly-aspartic acids have high affinity for hydroxyapatite, to develop new bone targeting (68)Ga-labeled bone imaging agents for PET, we used 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) as a chelating site and conjugated aspartic acid peptides of varying lengths. Subsequently, we compared Ga complexes, Ga-DOTA-(Asp)n (n = 2, 5, 8, 11, or 14) with easy-to-handle (67)Ga, with the previously described (67)Ga-DOTA complex conjugated bisphosphonate, (67)Ga-DOTA-Bn-SCN-HBP. After synthesizing DOTA-(Asp)n by a Fmoc-based solid-phase method, complexes were formed with (67)Ga, resulting in (67)Ga-DOTA-(Asp)n with a radiochemical purity of over 95% after HPLC purification. In hydroxyapatite binding assays, the binding rate of (67)Ga-DOTA-(Asp)n increased with the increase in the length of the conjugated aspartate peptide. Moreover, in biodistribution experiments, (67)Ga-DOTA-(Asp)8, (67)Ga-DOTA-(Asp)11, and (67)Ga-DOTA-(Asp)14 showed high accumulation in bone (10.5 ± 1.5, 15.1 ± 2.6, and 12.8 ± 1.7% ID/g, respectively) but were barely observed in other tissues at 60 min after injection. Although bone accumulation of (67)Ga-DOTA-(Asp)n was lower than that of (67)Ga-DOTA-Bn-SCN-HBP, blood clearance of (67)Ga-DOTA-(Asp)n was more rapid. Accordingly, the bone/blood ratios of (67)Ga-DOTA-(Asp)11 and (67)Ga-DOTA-(Asp)14 were comparable with those of (67)Ga-DOTA-Bn-SCN-HBP. In conclusion, these data provide useful insights into the drug design of (68)Ga-PET tracers for the diagnosis of bone disorders, such as bone metastases.
- Published
- 2013
- Full Text
- View/download PDF