1. Combining full-length transcriptome sequencing and next generation sequencing to provide insight into the growth superiority of the hybrid grouper (Cromileptes altivelas (♀) × Epinephelus lanceolatus (♂)).
- Author
-
Cao, Liu, Ma, Jun, Lu, Yan, Chen, Pan, Hou, Xingrong, Yang, Ning, and Huang, Hai
- Subjects
NUCLEOTIDE sequencing ,FISH growth ,GROUPERS ,EPINEPHELUS ,GROWTH regulators ,HETEROSIS ,CYTOSKELETON - Abstract
The hybrid grouper (Cromileptes altivelas, ♀ × Epinephelus lanceolatus, ♂) is an economically important aquaculture species that exhibits certain growth advantages compared to its female parent, Cromileptes altivelas. However, the current understanding of the molecular mechanisms underlying the growth of hybrid groupers is lacking. Herein, we performed full-length transcriptome sequencing and next-generation sequencing on the hybrid grouper and its parents to identify growth-related genes and comprehensively analyze the regulatory mechanism of growth heterosis in the hybrid grouper. Approximately 44.70, 40.44, and 45.32 Gb of single-molecule real-time sequencing data were generated in C. altivelas (Cal), E. lanceolatus (Ela), and the hybrid (Hyb), which were combined into 204,322 non-redundant isoforms using the PacBio sequencing platform. Differentially expressed genes (DEGs) were identified between Hyb and Cal (3,494, 2,125, and 1,487 in brain, liver, and muscle tissues, respectively) and Hyb and Ela (3,415, 2,351, and 1,675 in brain, liver, and muscle tissues, respectively). Then, 27 DEGs (13 in the brain and 14 in the muscle) related to growth traits were identified using cluster and correlation network analysis. Quantitative RT-PCR validated 15 DEGs consistent with transcriptome sequencing (RNA-seq) trends. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that these 15 genes were mainly involved in regulating the actin cytoskeleton, suggesting that this pathway plays an essential role in fish growth. In addition, we found that the phosphatase and tensin homologue (PTEN) is a key regulator of growth heterosis in Hyb. These results shed light on the regulatory mechanism of growth in the Hyb, which is important for marker-assisted selection programs to improve the growth quality of groupers. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF