4 results on '"José M, Bautista"'
Search Results
2. Recombinant rabbit beta nerve growth factor production and its biological effects on sperm and ovulation in rabbits.
- Author
-
Ana Sanchez-Rodriguez, Paloma Abad, María Arias-Alvarez, Pilar G Rebollar, José M Bautista, Pedro L Lorenzo, and Rosa M García-García
- Subjects
Medicine ,Science - Abstract
In some induced-ovulating species, beta nerve growth factor (β-NGF) has important roles in ovulation, though data for rabbits are still inconclusive. In this study we first synthesized functional recombinant β-NGF from rabbit tissue (rrβ-NGF) to address the following objectives: 1) to compare rabbit β-NGF amino acid sequence with those of other induced- or spontaneous-ovulating species; 2) to assess the effects of rrβ-NGF on rabbit sperm viability and motility, and 3) to examine the in vivo ovulation inducing effect of rrβ-NGF added to the seminal dose in rabbit does. The NGF gene in rabbit prostate tissue was sequenced by Rapid Amplification of cDNA Ends and annotated in GenBank (KX528686). Recombinant rβ-NGF was produced in CHO cells and purified by affinity chromatography. Once confirmed by Western blotting and mass spectrometry (MALDI-TOF) that the amino acid sequence of the recombinant protein corresponded to β-NGF, its functionality was validated in PC12 cells in a successful dose-response study over 8 days. The amino acid sequence of prostate rabbit NGF differed to that of other species mainly in its receptor binding sites. In all the spontaneous ovulating species examined, compared with rabbit, alanine and proline residues, which interact with the high-affinity receptor, were replaced by a serine. In rabbits, asparagine and methionine were substituted by lysine at the low-affinity receptor binding site. In time- and dose-response experiments, the in vitro addition of rrβ-NGF to the ejaculate did not affect sperm viability whereas sperm motility parameters were enhanced by the addition of 1 μg/mL of the neuropeptide. Addition of this same concentration of rrβ-NGF to the seminal dose administered via the intravaginal route in does induced ovulation with a delayed LH peak, leading to a plasma progesterone increase, gestation and delivery. Our findings suggest that rrβ-NGF could be a useful option for biotechnological and reproduction assisted techniques in rabbits but further studies are needed.
- Published
- 2019
- Full Text
- View/download PDF
3. Differential immune response associated to malaria outcome is detectable in peripheral blood following Plasmodium yoelii infection in mice.
- Author
-
Isabel G Azcárate, Patricia Marín-García, Alí N Kamali, Susana Pérez-Benavente, Antonio Puyet, Amalia Diez, and José M Bautista
- Subjects
Medicine ,Science - Abstract
Malaria infection in humans elicits a wide range of immune responses that can be detected in peripheral blood, but we lack detailed long-term follow-up data on the primary and subsequent infections that lead to naturally acquired immunity. Studies on antimalarial immune responses in mice have been based on models yielding homogenous infection profiles. Here, we present a mouse model in which a heterogeneous course of Plasmodium yoelii lethal malaria infection is produced in a non-congenic ICR strain to allow comparison among different immunological and clinical outcomes. Three different disease courses were observed ranging from a fatal outcome, either early or late, to a self-resolved infection that conferred long-term immunity against re-infection. Qualitative and quantitative changes produced in leukocyte subpopulations and cytokine profiles detected in peripheral blood during the first week of infection revealed that monocytes, dendritic cells and immature B cells were the main cell subsets present in highly-parasitized mice dying in the first week after infection. Besides, CD4(+)CD25(high) T cells expanded at an earlier time point in early deceased mice than in surviving mice and expressed higher levels of intracellular Foxp3 protein. In contrast, survivors showed a limited increase of cytokines release and stable circulating innate cells. From the second week of infection, mice that would die or survive showed similar immune profiles, although CD4(+)CD25(high) T cells number increased earlier in mice with the worst prognosis. In surviving mice the expansion of activated circulating T cell and switched-class B cells with a long-term protective humoral response from the second infection week is remarkable. Our results demonstrate that the follow-up studies of immunological blood parameters during a malaria infection can offer information about the course of the pathological process and the immune response.
- Published
- 2014
- Full Text
- View/download PDF
4. Differential Immune Response Associated to Malaria Outcome Is Detectable in Peripheral Blood following Plasmodium yoelii Infection in Mice
- Author
-
Patricia Marín-García, Amalia Diez, Antonio Puyet, Isabel G. Azcárate, Ali N. Kamali, José M. Bautista, and Susana Pérez-Benavente
- Subjects
CD4-Positive T-Lymphocytes ,Adoptive cell transfer ,Anatomy and Physiology ,Mouse ,medicine.medical_treatment ,lcsh:Medicine ,Antibodies, Protozoan ,Parasitemia ,CD8-Positive T-Lymphocytes ,Cardiovascular System ,Monocytes ,Mice ,lcsh:Science ,Immune Response ,Mice, Inbred BALB C ,Mice, Inbred ICR ,Multidisciplinary ,biology ,Forkhead Transcription Factors ,Animal Models ,Acquired immune system ,Adoptive Transfer ,Cytokine ,medicine.anatomical_structure ,Infectious Diseases ,Treatment Outcome ,Circulatory Physiology ,Medicine ,Cytokines ,Female ,Plasmodium yoelii ,Research Article ,Clinical Research Design ,T cell ,Immunology ,Immunoglobulins ,Microbiology ,Immune system ,Model Organisms ,Immunity ,medicine ,Parasitic Diseases ,Animals, Outbred Strains ,Animals ,Humans ,Animal Models of Disease ,Biology ,lcsh:R ,Histocompatibility Antigens Class II ,Tropical Diseases (Non-Neglected) ,Dendritic Cells ,biology.organism_classification ,medicine.disease ,Virology ,Malaria ,Immunity, Humoral ,Leukocyte Common Antigens ,lcsh:Q ,Parasitology ,Infectious Disease Modeling - Abstract
Malaria infection in humans elicits a wide range of immune responses that can be detected in peripheral blood, but we lack detailed long-term follow-up data on the primary and subsequent infections that lead to naturally acquired immunity. Studies on antimalarial immune responses in mice have been based on models yielding homogenous infection profiles. Here, we present a mouse model in which a heterogeneous course of Plasmodium yoelii lethal malaria infection is produced in a non-congenic ICR strain to allow comparison among different immunological and clinical outcomes. Three different disease courses were observed ranging from a fatal outcome, either early or late, to a self-resolved infection that conferred long-term immunity against re-infection. Qualitative and quantitative changes produced in leukocyte subpopulations and cytokine profiles detected in peripheral blood during the first week of infection revealed that monocytes, dendritic cells and immature B cells were the main cell subsets present in highly-parasitized mice dying in the first week after infection. Besides, CD4(+)CD25(high) T cells expanded at an earlier time point in early deceased mice than in surviving mice and expressed higher levels of intracellular Foxp3 protein. In contrast, survivors showed a limited increase of cytokines release and stable circulating innate cells. From the second week of infection, mice that would die or survive showed similar immune profiles, although CD4(+)CD25(high) T cells number increased earlier in mice with the worst prognosis. In surviving mice the expansion of activated circulating T cell and switched-class B cells with a long-term protective humoral response from the second infection week is remarkable. Our results demonstrate that the follow-up studies of immunological blood parameters during a malaria infection can offer information about the course of the pathological process and the immune response.
- Published
- 2014
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.