1. Predicting diabetic nephropathy using a multifactorial genetic model.
- Author
-
Ilana Blech, Mark Katzenellenbogen, Alexandra Katzenellenbogen, Julio Wainstein, Ardon Rubinstein, Ilana Harman-Boehm, Joseph Cohen, Toni I Pollin, and Benjamin Glaser
- Subjects
Medicine ,Science - Abstract
AIMS: The tendency to develop diabetic nephropathy is, in part, genetically determined, however this genetic risk is largely undefined. In this proof-of-concept study, we tested the hypothesis that combined analysis of multiple genetic variants can improve prediction. METHODS: Based on previous reports, we selected 27 SNPs in 15 genes from metabolic pathways involved in the pathogenesis of diabetic nephropathy and genotyped them in 1274 Ashkenazi or Sephardic Jewish patients with Type 1 or Type 2 diabetes of >10 years duration. A logistic regression model was built using a backward selection algorithm and SNPs nominally associated with nephropathy in our population. The model was validated by using random "training" (75%) and "test" (25%) subgroups of the original population and by applying the model to an independent dataset of 848 Ashkenazi patients. RESULTS: The logistic model based on 5 SNPs in 5 genes (HSPG2, NOS3, ADIPOR2, AGER, and CCL5) and 5 conventional variables (age, sex, ethnicity, diabetes type and duration), and allowing for all possible two-way interactions, predicted nephropathy in our initial population (C-statistic = 0.672) better than a model based on conventional variables only (C = 0.569). In the independent replication dataset, although the C-statistic of the genetic model decreased (0.576), it remained highly associated with diabetic nephropathy (χ(2) = 17.79, p
- Published
- 2011
- Full Text
- View/download PDF