1. In vivo identification and validation of novel potential predictors for human cardiovascular diseases.
- Author
-
Hammouda OT, Wu MY, Kaul V, Gierten J, Thumberger T, and Wittbrodt J
- Subjects
- Animals, Animals, Genetically Modified, CRISPR-Cas Systems genetics, Cardiovascular Diseases diagnosis, Cardiovascular Diseases pathology, Gene Editing, Genome-Wide Association Study, Humans, Promoter Regions, Genetic genetics, Cardiovascular Diseases genetics, Heart Rate genetics, Myosin Light Chains genetics, Oryzias genetics
- Abstract
Genetics crucially contributes to cardiovascular diseases (CVDs), the global leading cause of death. Since the majority of CVDs can be prevented by early intervention there is a high demand for the identification of predictive causative genes. While genome wide association studies (GWAS) correlate genes and CVDs after diagnosis and provide a valuable resource for such causative candidate genes, often preferentially those with previously known or suspected function are addressed further. To tackle the unaddressed blind spot of understudied genes, we particularly focused on the validation of human heart phenotype-associated GWAS candidates with little or no apparent connection to cardiac function. Building on the conservation of basic heart function and underlying genetics from fish to human we combined CRISPR/Cas9 genome editing of the orthologs of human GWAS candidates in isogenic medaka with automated high-throughput heart rate analysis. Our functional analyses of understudied human candidates uncovered a prominent fraction of heart rate associated genes from adult human patients impacting on the heart rate in embryonic medaka already in the injected generation. Following this pipeline, we identified 16 GWAS candidates with potential diagnostic and predictive power for human CVDs., Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2021
- Full Text
- View/download PDF