1. MiR-132 suppresses the migration and invasion of lung cancer cells via targeting the EMT regulator ZEB2.
- Author
-
Jiacong You, Yang Li, Nianzhen Fang, Bin Liu, Lingling Zu, Rui Chang, Xuebing Li, and Qinghua Zhou
- Subjects
Medicine ,Science - Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs which can function as oncogenes or tumor suppressor genes in human cancers. Emerging evidence reveals that deregulation of miRNAs contributes to the human non-small cell lung cancer (NSCLC). In the present study, we demonstrated that the expression levels of miR-132 were dramatically decreased in examined NSCLC cell lines and clinical NSCLC tissue samples. Then, we found that introduction of miR-132 significantly suppressed the migration and invasion of lung cancer cells in vitro, suggesting that miR-132 may be a novel tumor suppressor. Further studies indicated that the EMT-related transcription factor ZEB2 was one direct target genes of miR-132, evidenced by the direct binding of miR-132 with the 3' untranslated region (3' UTR) of ZEB2. Further, miR-132 could decrease the expression of ZEB2 at the levels of mRNA and protein. Notably, the EMT marker E-cadherin or vimentin, a downstream of ZEB2, was also down-regulated or up-regulated upon miR-132 treatment. Additionally, over-expressing or silencing ZEB2 was able to elevate or inhibit the migration and invasion of lung cancer cells, parallel to the effect of miR-132 on the lung cancer cells. Meanwhile, knockdown of ZEB2 reversed the enhanced migration and invasion mediated by anti-miR-132. These results indicate that miR-132 suppresses the migration and invasion of NSCLC cells through targeting ZEB2 involving the EMT process. Thus, our finding provides new insight into the mechanism of NSCLC progression. Therapeutically, miR-132 may serve as a potential target in the treatment of human lung cancer.
- Published
- 2014
- Full Text
- View/download PDF