1. Role of tumor-associated neutrophils in regulation of tumor growth in lung cancer development: A mathematical model
- Author
-
Sean E. Lawler, Seongwon Lee, Donggu Lee, Jun Ho Lee, and Yangjin Kim
- Subjects
0301 basic medicine ,Cell signaling ,Lung Neoplasms ,Neutrophils ,Apoptosis ,Signal transduction ,Lung and Intrathoracic Tumors ,White Blood Cells ,0302 clinical medicine ,Mathematical and Statistical Techniques ,Transforming Growth Factor beta ,Animal Cells ,Tumor Microenvironment ,Medicine and Health Sciences ,Immune Response ,Multidisciplinary ,Cell Death ,Mathematical Models ,Signaling cascades ,Phenotype ,Neoplasm Proteins ,Crosstalk (biology) ,Oncology ,Cell Processes ,030220 oncology & carcinogenesis ,Medicine ,Cellular Types ,Research Article ,Prognostic factor ,Signal Inhibition ,Science ,Immune Cells ,Immunology ,Biology ,Research and Analysis Methods ,Models, Biological ,03 medical and health sciences ,medicine ,Humans ,Tumor growth ,Lung cancer ,Tumor microenvironment ,Innate immune system ,Blood Cells ,Biology and Life Sciences ,Cancers and Neoplasms ,Interferon-beta ,Cell Biology ,medicine.disease ,Non-Small Cell Lung Cancer ,030104 developmental biology ,TGF-beta signaling cascade ,Cancer research - Abstract
Neutrophils display rapid and potent innate immune responses in various diseases. Tumor-associated neutrophils (TANs) however either induce or overcome immunosuppressive functions of the tumor microenvironment through complex tumor-stroma crosstalk. We developed a mathematical model to address the question of how phenotypic alterations between tumor suppressive N1 TANS, and tumor promoting N2 TANs affect nonlinear tumor growth in a complex tumor microenvironment. The model provides a visual display of the complex behavior of populations of TANs and tumors in response to various TGF-β and IFN-β stimuli. In addition, the effect of anti-tumor drug administration is incorporated in the model in an effort to achieve optimal anti-tumor efficacy. The simulation results from the mathematical model were in good agreement with experimental data. We found that the N2-to-N1 ratio (N21R) index is positively correlated with aggressive tumor growth, suggesting that this may be a good prognostic factor. We also found that the antitumor efficacy increases when the relative ratio (Dap) of delayed apoptotic cell death of N1 and N2 TANs is either very small or relatively large, providing a basis for therapeutically targeting prometastatic N2 TANs.
- Published
- 2018