1. Error-corrected ultradeep next-generation sequencing for detection of clonal haematopoiesis and haematological neoplasms - sensitivity, specificity and accuracy.
- Author
-
Tursky ML, Artuz CM, Rapadas M, Wittert GA, Molloy TJ, and Ma DD
- Subjects
- Humans, Reproducibility of Results, Gene Frequency, High-Throughput Nucleotide Sequencing methods, Clonal Hematopoiesis genetics, Hematologic Neoplasms genetics, Hematologic Neoplasms diagnosis, Sensitivity and Specificity
- Abstract
Clonal haematopoiesis of indeterminate potential (CHIP) is an aging-associated phenomenon that has recently been correlated with a broad spectrum of human diseases, including haematological malignancy, cytopenia, coronary heart disease, stroke, and overall mortality. CHIP is defined as a somatic variant in blood cells with an allele frequency (VAF) ≥ 0.02, however recent reports show smaller clones are associated with poorer clinical outcome. Error-corrected ultradeep next-generation sequencing (NGS) assays detecting variants < 0.02 VAF also have clinical value for monitoring measurable residual disease (MRD) for myeloid neoplasms. However, limited data are available on optimal parameters, limits of detection, and accuracy of ultra-sensitive detection. We investigated parameters to improve accuracy of Illumina sequencing-by-synthesis method, including read depth, input DNA quantity, and molecular barcoding-based data filtering, while adhering to clinical accreditation criteria. Validation data were generated from reference standards and reference samples from a clinically accredited pathology laboratory. Analytical range measurements included linearity and bias, and precision included repeatability, reproducibility and detection rate. The lower limit of detection was ≥ 0.004 (0.4%) at depth > 3,000 × . Trueness measured using reference standards demonstrated a sensitivity, specificity, positive and negative predictive values, and accuracy of 100%, including FLT3-ITD, and 100% concordance was achieved with reference samples for reported variants and absence of variants. Sequencing blood samples from 383 community-dwelling adults (mean depth 3758×) revealed 2,190 somatic variants/sample, > 99.9% were < 0.02 VAF. Our data including cost-benefit analysis enables pathology and research laboratories to make informed decisions for detection of CHIP (VAF ≥ 0.02), sub-CHIP (VAF 0.01-0.02) and MRD (VAF ≥ 0.004)., Competing Interests: The authors have declared that no competing interests exist., (Copyright: © 2025 Tursky et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
- Published
- 2025
- Full Text
- View/download PDF