1. Tolerance optimization by modification of Taguchi’s robust design approach and considering performance levels: Application to the design of a cold-expanded bushing
- Author
-
Marc Sartor, Romain Canivenc, Manuel Paredes, Institut Clément Ader (ICA), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-IMT École nationale supérieure des Mines d'Albi-Carmaux (IMT Mines Albi), and Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO)
- Subjects
Engineering ,Taguchi methods ,Robust design ,business.industry ,Mechanical Engineering ,Bushing ,Tolerance optimization ,Aerospace Engineering ,Architecture ,business ,[SPI.MECA.GEME]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanical engineering [physics.class-ph] ,Reliability engineering - Abstract
International audience; This paper defines a method for the optimization of design parameter tolerances. The general architecture of the proposed method is identical to that of the robust design reference method proposed by Taguchi but its content is different as the tolerances are considered as functions to be maximized here, while Taguchi\textquoterights method rather considers these tolerances as fixed data. Instead of looking for design parameters that minimize the sensitivity of some performance criteria, the design parameters are calculated so as to obtain maximal tolerance intervals, thus minimizing manufacturing costs. Performance criteria are then considered in terms of optimization constraints: each criterion gives rise to an inequality constraint that specifies the minimum level of performance that the designer wants to achieve. The possibilities offered by this method are illustrated through its use in the preliminary design of a cold-expanded bushing. In this case, tolerance optimization enables the allowable tolerances on the design diameters to be increased and performance levels are defined on the residual radial stress at the bushing/part contact radius and on the residual orthoradial (hoop) stress at the part inner radius.
- Published
- 2013
- Full Text
- View/download PDF