1. Behavioral and neurochemical interactions of the tricyclic antidepressant drug desipramine with L-DOPA in 6-OHDA-lesioned rats. Implications for motor and psychiatric functions in Parkinson's disease.
- Author
-
Kamińska K, Lenda T, Konieczny J, and Lorenc-Koci E
- Subjects
- Animals, Rats, Oxidopamine, Antidepressive Agents, Tricyclic pharmacology, Desipramine pharmacology, Dopamine metabolism, Serotonin metabolism, Antipruritics metabolism, Antipruritics pharmacology, Platelet Aggregation Inhibitors metabolism, Platelet Aggregation Inhibitors pharmacology, Antiparkinson Agents pharmacology, Antiparkinson Agents metabolism, Corpus Striatum, Norepinephrine metabolism, Levodopa pharmacology, Parkinson Disease drug therapy
- Abstract
Rationale: The pharmacological effects of antidepressants in modulating noradrenergic transmission as compared to serotonergic transmission in a rat model of Parkinson's disease under chronic L-DOPA therapy are insufficiently explored., Objectives: The aim of the present study was to investigate the effect of the tricyclic antidepressant desipramine administered chronically alone or jointly with L-DOPA, on motor behavior and monoamine metabolism in selected brain structures of rats with the unilateral 6-OHDA lesion., Methods: The antiparkinsonian activities of L-DOPA and desipramine were assessed behaviorally using a rotation test and biochemically based on changes in the tissue concentrations of noradrenaline, dopamine and serotonin and their metabolites, evaluated separately for the ipsi- and contralateral motor (striatum, substantia nigra) and limbic (prefrontal cortex, hippocampus) structures of rat brain by HPLC method., Results: Desipramine administered alone did not induce rotational behavior, but in combination with L-DOPA, it increased the number of contralateral rotations more strongly than L-DOPA alone. Both L-DOPA and desipramine + L-DOPA significantly increased DA levels in the ipsilateral striatum, substantia nigra, prefrontal cortex and the ipsi- and contralateral hippocampus. The combined treatment also significantly increased noradrenaline content in the ipsi- and contralateral striatum, while L-DOPA alone decreased serotonin level on both sides of the hippocampus., Conclusions: The performed analysis of the level of monoamines and their metabolites in the selected brain structures suggests that co-modulation of noradrenergic and dopaminergic transmission in Parkinson's disease by the combined therapy with desipramine + L-DOPA may have some positive implications for motor and psychiatric functions but further research is needed to exclude potential negative effects., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF