1. Oral administration of methysticin improves cognitive deficits in a mouse model of Alzheimer's disease
- Author
-
Sandra Jansen, Joachim Weis, Lars-Ove Brandenburg, Athanassios Fragoulis, Stephanie Siegl, Thomas Pufe, Christoph Jan Wruck, Ulf Soppa, and Markus Fendt
- Subjects
0301 basic medicine ,Clinical Biochemistry ,Administration, Oral ,Morris water navigation task ,Astrogliosis ,Pharmacology ,medicine.disease_cause ,Hippocampus ,Nrf2, nuclear factor erythroid 2-related factor 2 ,Biochemistry ,Mice ,chemistry.chemical_compound ,0302 clinical medicine ,Neuroinflammation ,Kava kava ,IL-6, interleukin-6 ,Methysticin ,lcsh:QH301-705.5 ,APP, amyloid beta precursor protein ,Cerebral Cortex ,lcsh:R5-920 ,Microglia ,IL-10, interleukin-10 ,Alzheimer's disease ,Aβ, amyloid-beta ,Neuroprotective Agents ,medicine.anatomical_structure ,medicine.symptom ,lcsh:Medicine (General) ,Iba1, ionized calcium-binding adapter molecule 1 ,GFAP, Glial fibrillary acidic protein ,Signal Transduction ,Research Paper ,NF-E2-Related Factor 2 ,Psen1, presenilin-1 ,Mice, Transgenic ,ARE, antioxidant response element ,Inflammation ,Nrf2 ,03 medical and health sciences ,PBS, phosphate buffered saline ,Alzheimer Disease ,qRT-PCR, quantitative reverse-transcriptase polymerase chain reaction ,Presenilin-1 ,medicine ,Animals ,Humans ,Maze Learning ,AD, Alzheimer's Disease ,Pyrans ,Memory Disorders ,Amyloid beta-Peptides ,IL-1β, interleukin-1 beta ,business.industry ,IL-17A, interleukin-17a ,TNF-α, tumor necrosis factor-alpha ,Organic Chemistry ,medicine.disease ,BCA, bicinchoninic acid ,Kavalactone ,Disease Models, Animal ,Oxidative Stress ,030104 developmental biology ,Gene Expression Regulation ,IFNγ, interferon gamma ,lcsh:Biology (General) ,chemistry ,Immunology ,BSA, bovine serum albumin ,business ,030217 neurology & neurosurgery ,Oxidative stress - Abstract
Introduction There is increasing evidence for the involvement of chronic inflammation and oxidative stress in the pathogenesis of Alzheimer's disease (AD). Nuclear factor erythroid 2-related factor 2 (Nrf2) is an anti-inflammatory transcription factor that regulates the oxidative stress defense. Our previous experiments demonstrated that kavalactones protect neuronal cells against Amyloid β (Aβ)-induced oxidative stress in vitro by Nrf2 pathway activation. Here, we tested an in vivo kavalactone treatment in a mouse model of AD. Methods The kavalactone methysticin was administered once a week for a period of 6 months to 6 month old transgenic APP/Psen1 mice by oral gavage. Nrf2 pathway activation was measured by methysticin treatment of ARE-luciferase mice, by qPCR of Nrf2-target genes and immunohistochemical detection of Nrf2. Aβ burden was analyzed by CongoRed staining, immunofluorescent detection and ELISA. Neuroinflammation was assessed by immunohistochemical stainings for microglia and astrocytes. Pro-inflammatory cytokines in the hippocampus was determined by Luminex multi-plex assays. The hippocampal oxidative damage was detected by oxyblot technique and immunohistochemical staining against DT3 and 4-HNE. The cognitive ability of mice was evaluated using Morris water maze. Results Methysticin treatment activated the Nrf2 pathway in the hippocampus and cortex of mice. The Aβ deposition in brains of methysticin-treated APP/Psen1 mice was not altered compared to untreated mice. However, methysticin treatment significantly reduced microgliosis, astrogliosis and secretion of the pro-inflammatory cytokines TNF-α and IL-17A. In addition, the oxidative damage of hippocampi from APP/Psen1 mice was reduced by methysticin treatment. Most importantly, methysticin treatment significantly attenuated the long-term memory decline of APP/Psen1 mice. Conclusion In summary, these findings show that methysticin administration activates the Nrf2 pathway and reduces neuroinflammation, hippocampal oxidative damage and memory loss in a mouse model of AD. Therefore, kavalactones might be suitable candidates to serve as lead compounds for the development of a new class of neuroprotective drugs., Highlights • Methysticin activates the Nrf2/ARE system in the hippocampus of mice. • Methysticin protects AD mice against oxidative stress and associated neuroinflammation due to Nrf2 activation. • Methysticin improves long-term memory impairment in this mouse model of AD.
- Published
- 2017
- Full Text
- View/download PDF