Helen da Costa Gurgel, Sandra Hacon, Thibault Catry, Christophe Révillion, Emmanuel Roux, Hassan Bencherif, Diego Ricardo Xavier, Renata Gracie, Christovam Barcellos, Nadine Dessay, Nelson Bègue, Antônio Miguel Vieira Monteiro, Eliane Ignotti, Daniel Antunes Maciel Villela, Mônica de Avelar Figueiredo Mafra Magalhães, UMR 228 Espace-Dev, Espace pour le développement, Université des Antilles (UA)-Université de Guyane (UG)-Université de Montpellier (UM)-Université de La Réunion (UR)-Avignon Université (AU)-Université de Perpignan Via Domitia (UPVD)-Institut de Recherche pour le Développement (IRD), LMI Sentinela [Rio de Janeiro], Institut de Recherche pour le Développement (IRD)-Universidade de Brasilia [Brasília] (UnB)-Fundação Oswaldo Cruz (FIOCRUZ), Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP), Laboratório de Informação em Saúde [Rio de Janeiro] (LIS), Institute of Scientific and Technological Communication and Information in Health / Instituto de Comunicação e Informação Científica e Tecnológica em Saúde [Rio de Janeiro] (ICICT), Fundação Oswaldo Cruz (FIOCRUZ), Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Fundação Oswaldo Cruz (FIOCRUZ), Universidade do Estado de Mato Grosso (UNEMAT), Laboratoire de l'Atmosphère et des Cyclones (LACy), Météo France-Université de La Réunion (UR)-Centre National de la Recherche Scientifique (CNRS), Laboratório de Geografia, Ambiente e Saúde (LAGAS), Universidade de Brasilia [Brasília] (UnB), Escola Nacional de Saude Publica Sergio Arouca / Sergio Arouca National School of Public Health [Rio de Janeiro] (ENSP), Instituto Nacional de Pesquisas Espaciais (INPE), Ministério da Ciência, Tecnologia e Inovação, Program for Scientific Computing / Programa de Computação Científica [Rio de Janeiro] (PROCC), This research was supported by the MARIONETTE3 project, funded by the Observations of Natural Environments and Global Changes (OMNCG) Research Federation of the Observatory of Universe Sciences of Reunion Island (OSU-Réunion) and Reunion University, Université de Guyane (UG)-Université des Antilles (UA)-Institut de Recherche pour le Développement (IRD)-Université de Perpignan Via Domitia (UPVD)-Avignon Université (AU)-Université de La Réunion (UR)-Université de Montpellier (UM), Institut national des sciences de l'Univers (INSU - CNRS)-Météo France-Université de La Réunion (UR)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD)-Université de Perpignan Via Domitia (UPVD)-Avignon Université (AU)-Université de La Réunion (UR)-Université de Montpellier (UM)-Université de Guyane (UG)-Université des Antilles (UA), Institut de Recherche pour le Développement (IRD)-Universidade de Brasilia [Brasília] (UnB)-Fundação Oswaldo Cruz / Oswaldo Cruz Foundation (FIOCRUZ), Fundação Oswaldo Cruz / Oswaldo Cruz Foundation (FIOCRUZ), Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Fundação Oswaldo Cruz / Oswaldo Cruz Foundation (FIOCRUZ), and Institut national des sciences de l'Univers (INSU - CNRS)-Université de La Réunion (UR)-Centre National de la Recherche Scientifique (CNRS)-Météo-France
PM2.5 severely affects human health. Remotely sensed (RS) data can be used to estimate PM2.5 concentrations and population exposure, and therefore to explain acute respiratory disorders. However, available global PM2.5 concentration forecast products derived from models assimilating RS data have not yet been exploited to generate early alerts for respiratory problems in Brazil. We investigated the feasibility of building such an early warning system. For this, PM2.5 concentrations on a 4-day horizon forecast were provided by the Copernicus Atmosphere Monitoring Service (CAMS) and compared with the number of severe acute respiratory disease (SARD) cases. Confounding effects of the meteorological conditions were considered by selecting the best linear regression models in terms of Akaike Information Criterion (AIC), with meteorological features and their two-way interactions as explanatory variables and PM2.5 concentrations and SARD cases, taken separately, as response variables. Pearson and Spearman correlation coefficients were then computed between the residuals of the models for PM2.5 concentration and SARD cases. The results show a clear tendency to positive correlations between PM2.5 and SARD in all regions of Brazil but the South one, with Spearman’s correlation coefficient reaching 0.52 (p < 0.01). Positive significant correlations were also found in the South region by previously correcting the effects of viral infections on the SARD case dynamics. The possibility of using CAMS global PM2.5 concentration forecast products to build an early warning system for pollution-related effects on human health in Brazil was therefore established. Further investigations should be performed to determine alert threshold(s) and possibly build combined risk indicators involving other risk factors for human respiratory diseases. This is of particular interest in Brazil, where the COVID-19 pandemic and biomass burning are occurring concomitantly, to help minimize the effects of PM emissions and implement mitigation actions within populations.