1. Crop Rotation Modeling for Deep Learning-Based Parcel Classification from Satellite Time Series
- Author
-
Quinton, Félix, Landrieu, Loic, Méthodes d'Analyses pour le Traitement d'Images et la Stéréorestitution (MATIS), Laboratoire des Sciences et Technologies de l'Information Géographique (LaSTIG), École nationale des sciences géographiques (ENSG), Institut National de l'Information Géographique et Forestière [IGN] (IGN)-Institut National de l'Information Géographique et Forestière [IGN] (IGN)-École nationale des sciences géographiques (ENSG), and Institut National de l'Information Géographique et Forestière [IGN] (IGN)-Institut National de l'Information Géographique et Forestière [IGN] (IGN)
- Subjects
010504 meteorology & atmospheric sciences ,Computer Science - Artificial Intelligence ,Computer science ,Science ,Computer Science - Computer Vision and Pattern Recognition ,Word error rate ,Agricultural engineering ,01 natural sciences ,Reduction (complexity) ,crop rotation ,crop mapping ,Sentinel-2 ,[STAT.ML]Statistics [stat]/Machine Learning [stat.ML] ,0105 earth and related environmental sciences ,2. Zero hunger ,I.2.10 ,Series (mathematics) ,business.industry ,Deep learning ,Training (meteorology) ,[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV] ,04 agricultural and veterinary sciences ,15. Life on land ,Crop rotation ,Agriculture ,040103 agronomy & agriculture ,0401 agriculture, forestry, and fisheries ,General Earth and Planetary Sciences ,Satellite ,Artificial intelligence ,business - Abstract
While annual crop rotations play a crucial role for agricultural optimization, they have been largely ignored for automated crop type mapping. In this paper, we take advantage of the increasing quantity of annotated satellite data to propose the first deep learning approach modeling simultaneously the inter- and intra-annual agricultural dynamics of parcel classification. Along with simple training adjustments, our model provides an improvement of over 6.3 mIoU points over the current state-of-the-art of crop classification. Furthermore, we release the first large-scale multi-year agricultural dataset with over 300,000 annotated parcels., Comment: Published in Remote Sensing
- Published
- 2021
- Full Text
- View/download PDF