1. SiamRhic: Improved Cross-Correlation and Ranking Head-Based Siamese Network for Object Tracking in Remote Sensing Videos
- Author
-
Afeng Yang, Zhuolin Yang, and Wenqing Feng
- Subjects
object tracking ,remote sensing images ,Siamese network ,attention mechanism ,Science - Abstract
Object tracking in remote sensing videos is a challenging task in computer vision. Recent advances in deep learning have sparked significant interest in tracking algorithms based on Siamese neural networks. However, many existing algorithms fail to deliver satisfactory performance in complex scenarios due to challenging conditions and limited computational resources. Thus, enhancing tracking efficiency and improving algorithm responsiveness in complex scenarios are crucial. To address tracking drift caused by similar objects and background interference in remote sensing image tracking, we propose an enhanced Siamese network based on the SiamRhic architecture, incorporating a cross-correlation and ranking head for improved object tracking. We first use convolutional neural networks for feature extraction and integrate the CBAM (Convolutional Block Attention Module) to enhance the tracker’s representational capacity, allowing it to focus more effectively on the objects. Additionally, we replace the original depth-wise cross-correlation operation with asymmetric convolution, enhancing both speed and performance. We also introduce a ranking loss to reduce the classification confidence of interference objects, addressing the mismatch between classification and regression. We validate the proposed algorithm through experiments on the OTB100, UAV123, and OOTB remote sensing datasets. Specifically, SiamRhic achieves success, normalized precision, and precision rates of 0.533, 0.786, and 0.812, respectively, on the OOTB benchmark. The OTB100 benchmark achieves a success rate of 0.670 and a precision rate of 0.892. Similarly, in the UAV123 benchmark, SiamRhic achieves a success rate of 0.621 and a precision rate of 0.823. These results demonstrate the algorithm’s high precision and success rates, highlighting its practical value.
- Published
- 2024
- Full Text
- View/download PDF