1. Geological, multispectral, and meteorological imaging results from the Mars 2020 Perseverance rover in Jezero crater.
- Author
-
Bell JF 3rd, Maki JN, Alwmark S, Ehlmann BL, Fagents SA, Grotzinger JP, Gupta S, Hayes A, Herkenhoff KE, Horgan BHN, Johnson JR, Kinch KB, Lemmon MT, Madsen MB, Núñez JI, Paar G, Rice M, Rice JW Jr, Schmitz N, Sullivan R, Vaughan A, Wolff MJ, Bechtold A, Bosak T, Duflot LE, Fairén AG, Garczynski B, Jaumann R, Merusi M, Million C, Ravanis E, Shuster DL, Simon J, St Clair M, Tate C, Walter S, Weiss B, Bailey AM, Bertrand T, Beyssac O, Brown AJ, Caballo-Perucha P, Caplinger MA, Caudill CM, Cary F, Cisneros E, Cloutis EA, Cluff N, Corlies P, Crawford K, Curtis S, Deen R, Dixon D, Donaldson C, Barrington M, Ficht M, Fleron S, Hansen M, Harker D, Howson R, Huggett J, Jacob S, Jensen E, Jensen OB, Jodhpurkar M, Joseph J, Juarez C, Kah LC, Kanine O, Kristensen J, Kubacki T, Lapo K, Magee A, Maimone M, Mehall GL, Mehall L, Mollerup J, Viúdez-Moreiras D, Paris K, Powell KE, Preusker F, Proton J, Rojas C, Sallurday D, Saxton K, Scheller E, Seeger CH, Starr M, Stein N, Turenne N, Van Beek J, Winhold AG, and Yingling R
- Abstract
Perseverance's Mastcam-Z instrument provides high-resolution stereo and multispectral images with a unique combination of spatial resolution, spatial coverage, and wavelength coverage along the rover's traverse in Jezero crater, Mars. Images reveal rocks consistent with an igneous (including volcanic and/or volcaniclastic) and/or impactite origin and limited aqueous alteration, including polygonally fractured rocks with weathered coatings; massive boulder-forming bedrock consisting of mafic silicates, ferric oxides, and/or iron-bearing alteration minerals; and coarsely layered outcrops dominated by olivine. Pyroxene dominates the iron-bearing mineralogy in the fine-grained regolith, while olivine dominates the coarse-grained regolith. Solar and atmospheric imaging observations show significant intra- and intersol variations in dust optical depth and water ice clouds, as well as unique examples of boundary layer vortex action from both natural (dust devil) and Ingenuity helicopter-induced dust lifting. High-resolution stereo imaging also provides geologic context for rover operations, other instrument observations, and sample selection, characterization, and confirmation.
- Published
- 2022
- Full Text
- View/download PDF