1. Laser spectroscopy of muonic deuterium.
- Author
-
Pohl R, Nez F, Fernandes LM, Amaro FD, Biraben F, Cardoso JM, Covita DS, Dax A, Dhawan S, Diepold M, Giesen A, Gouvea AL, Graf T, Hänsch TW, Indelicato P, Julien L, Knowles P, Kottmann F, Le Bigot EO, Liu YW, Lopes JA, Ludhova L, Monteiro CM, Mulhauser F, Nebel T, Rabinowitz P, dos Santos JM, Schaller LA, Schuhmann K, Schwob C, Taqqu D, Veloso JF, and Antognini A
- Abstract
The deuteron is the simplest compound nucleus, composed of one proton and one neutron. Deuteron properties such as the root-mean-square charge radius rd and the polarizability serve as important benchmarks for understanding the nuclear forces and structure. Muonic deuterium μd is the exotic atom formed by a deuteron and a negative muon μ(-). We measured three 2S-2P transitions in μd and obtain r(d) = 2.12562(78) fm, which is 2.7 times more accurate but 7.5σ smaller than the CODATA-2010 value r(d) = 2.1424(21) fm. The μd value is also 3.5σ smaller than the r(d) value from electronic deuterium spectroscopy. The smaller r(d), when combined with the electronic isotope shift, yields a "small" proton radius r(p), similar to the one from muonic hydrogen, amplifying the proton radius puzzle., (Copyright © 2016, American Association for the Advancement of Science.)
- Published
- 2016
- Full Text
- View/download PDF