13 results on '"Mench, M."'
Search Results
2. Inter and intraspecific variability of dieldrin accumulation in Cucurbita fruits: New perspectives for food safety and phytomanagement of contaminated soils
- Author
-
Affholder, M.-C., Cohen, G.J.V., Gombert-Courvoisier, S., and Mench, M.
- Published
- 2023
- Full Text
- View/download PDF
3. Intensify production, transform biomass to energy and novel goods and protect soils in Europe—A vision how to mobilize marginal lands
- Author
-
Schröder, P., Beckers, B., Daniels, S., Gnädinger, F., Maestri, E., Marmiroli, N., Mench, M., Millan, R., Obermeier, M.M., Oustriere, N., Persson, T., Poschenrieder, C., Rineau, F., Rutkowska, B., Schmid, T., Szulc, W., Witters, N., and Sæbø, A.
- Published
- 2018
- Full Text
- View/download PDF
4. Plant testing with hemp and miscanthus to assess phytomanagement options including biostimulants and mycorrhizae on a metal-contaminated soil to provide biomass for sustainable biofuel production.
- Author
-
Ofori-Agyemang F, Waterlot C, Manu J, Laloge R, Francin R, Papazoglou EG, Alexopoulou E, Sahraoui AL, Tisserant B, Mench M, Burges A, and Oustrière N
- Subjects
- Cadmium analysis, Biofuels analysis, Biomass, Lead analysis, Poaceae metabolism, Soil chemistry, Plant Roots metabolism, Biodegradation, Environmental, Mycorrhizae metabolism, Cannabis metabolism, Soil Pollutants analysis
- Abstract
The need of biofuels from biomass, including sustainable aviation fuel, without using agricultural land dedicated to food crops, is in constant demand. Strategies to intensify biomass production using mycorrhizal fungi, biostimulants and their combinations could be solutions for improving the cultivation of lignocellulosic plants but still lack well-established validation on metal-contaminated soils. This study aimed to assess the yield of Miscanthus x giganteus J.M. Greef & Deuter and Cannabis sativa L. grown on a metal-contaminated agricultural soil (11 mg Cd, 536 mg Pb and 955 mg Zn kg
-1 ) amended with biostimulants and/or arbuscular mycorrhizal fungi, and the shoot Cd, Pb and Zn uptake. A pot trial was carried out with soil collected from a field near a former Pb/Zn smelter in France and six treatments: control (C), protein hydrolysate (a mixture of peptides and amino acids, PH), humic/fulvic acids (HFA), arbuscular mycorrhizae fungi (AMF), PH combined with AMF (PHxAMF), and HFA combined with AMF (HFAxAMF). Metal concentrations in the soil pore water (SPW), pH and electrical conductivity were measured over time. Miscanthus and hemp shoots were harvested on day 90. Both PH and PHxAMF treatments increased SPW Cd, Pb, and Zn concentrations (e.g. by 26, 1.9, and 22.9 times for miscanthus and 9.7, 4.7, and 19.3 times for hemp in the PH and PHxAMF treatments as compared to the control one, respectively). This led to phytotoxicity and reduced shoot yield for miscanthus. Conversely, HFA and HFAxAMF treatments decreased SPW Cd and Zn concentrations, increasing shoot yields for hemp and miscanthus. Shoot Cd, Pb, and Zn uptakes peaked for PH and PHxAMF hemp plants (in μg plant-1, Cd: 310-334, Pb: 34-38, and Zn: 232-309 for PHxAMF and PH, respectively), while lowest values occurred for PH miscanthus plants mainly due to low shoot yield. Overall, this study suggested that humic/fulvic acids can be an effective biostimulant for increasing shoot biomass production in a metal-contaminated soil. These results warrant further investigations of the HFAxAMF in field trials., Competing Interests: Declaration of competing interest The authors declare that there is no conflict of interest., (Copyright © 2023 Elsevier B.V. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF
5. Relaunch cropping on marginal soils by incorporating amendments and beneficial trace elements in an interdisciplinary approach.
- Author
-
Schröder P, Mench M, Povilaitis V, Rineau F, Rutkowska B, Schloter M, Szulc W, Žydelis R, and Loit E
- Subjects
- Agriculture, Crops, Agricultural, Ecosystem, Soil, Trace Elements
- Abstract
In the EU and world-wide, agriculture is in transition. Whilst we just converted conventional farming imprinted by the post-war food demand and heavy agrochemical usage into integrated and sustainable farming with optimized production, we now have to focus on even smarter agricultural management. Enhanced nutrient efficiency and resistance to pests/pathogens combined with a greener footprint will be crucial for future sustainable farming and its wider environment. Future land use must embrace efficient production and utilization of biomass for improved economic, environmental, and social outcomes, as subsumed under the EU Green Deal, including also sites that have so far been considered as marginal and excluded from production. Another frontier is to supply high-quality food and feed to increase the nutrient density of staple crops. In diets of over two-thirds of the world's population, more than one micronutrient (Fe, Zn, I or Se) is lacking. To improve nutritious values of crops, it will be necessary to combine integrated, systems-based approaches of land management with sustainable redevelopment of agriculture, including central ecosystem services, on so far neglected sites: neglected grassland, set aside land, and marginal lands, paying attention to their connectivity with natural areas. Here we need new integrative approaches which allow the application of different instruments to provide us not only with biomass of sufficient quality and quantity in a site specific manner, but also to improve soil ecological services, e.g. soil C sequestration, water quality, habitat and soil resistance to erosion, while keeping fertilization as low as possible. Such instruments may include the application of different forms of high carbon amendments, the application of macro- and microelements to improve crop performance and quality as well as a targeted manipulation of the soil microbiome. Under certain caveats, the potential of such sites can be unlocked by innovative production systems, ready for the sustainable production of crops enriched in micronutrients and providing services within a circular economy., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2021 Elsevier B.V. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
6. Long-term phytomanagement with compost and a sunflower - Tobacco rotation influences the structural microbial diversity of a Cu-contaminated soil.
- Author
-
Burges A, Fievet V, Oustriere N, Epelde L, Garbisu C, Becerril JM, and Mench M
- Subjects
- Composting, Copper analysis, Soil chemistry, Soil Pollutants analysis, Biodegradation, Environmental, Copper metabolism, Helianthus physiology, Soil Microbiology, Soil Pollutants metabolism, Nicotiana physiology
- Abstract
At a former wood preservation site contaminated with Cu, various phytomanagement options have been assessed in the last decade through physicochemical, ecotoxicological and biological assays. In a field trial at this site, phytomanagement with a crop rotation based on tobacco and sunflower, combined with the incorporation of compost and dolomitic limestone, has proved to be efficient in Cu-associated risk mitigation, ecological soil functions recovery and net gain of economic and social benefits. To demonstrate the long-term effectiveness and sustainability of phytomanagement, we assessed here the influence of this remediation option on the diversity, composition and structure of microbial communities over time, through a metabarcoding approach. After 9 years of phytomanagement, no overall effect was identified on microbial diversity; the soil amendments, notably the repeated compost application, led to shifts in soil microbial populations. This phytomanagement option induced changes in the composition of soil microbial communities, promoting the growth of microbial groups belonging to Alphaproteobacteria, many being involved in N cycling. Populations of Nitrososphaeria, which are crucial in nitrification, as well as taxa from phyla Planctomycetacia, Chloroflexi and Gemmatimonadetes, which are tolerant to metal contamination and adapted to oligotrophic soil conditions, decreased in amended phytomanaged plots. Our study provides an insight into population dynamics within soil microbial communities under long-term phytomanagement, in line with the assessment of soil ecological functions and their recovery., (Copyright © 2019 Elsevier B.V. All rights reserved.)
- Published
- 2020
- Full Text
- View/download PDF
7. Pilot scale aided-phytoremediation of a co-contaminated soil.
- Author
-
Marchand C, Mench M, Jani Y, Kaczala F, Notini P, Hijri M, and Hogland W
- Abstract
A pilot scale experiment was conducted to investigate the aided-phytoextraction of metals and the aided-phytodegradation of petroleum hydrocarbons (PHC) in a co-contaminated soil. First, this soil was amended with compost (10% w/w) and assembled into piles (Unp-10%C). Then, a phyto-cap of Medicago sativa L. either in monoculture (MS-10%C) or co-cropped with Helianthus annuus L. as companion planting (MSHA-10%C) was sown on the topsoil. Physico-chemical parameters and contaminants in the soil and its leachates were measured at the beginning and the end of the first growth season (after five months). In parallel, residual soil ecotoxicity was assessed using the plant species Lepidium sativum L. and the earthworm Eisenia fetida Savigny, 1826, while the leachate ecotoxicity was assessed using Lemna minor L. After 5months, PH C10-C40, PAH-L, PAH-M PAH-H, Pb and Cu concentrations in the MS-10%C soil were significantly reduced as compared to the Unp-10%C soil. Metal uptake by alfalfa was low but their translocation to shoots was high for Mn, Cr, Co and Zn (transfer factor (TF) >1), except for Cu and Pb. Alfalfa in monoculture reduced electrical conductivity, total organic C and Cu concentration in the leachate while pH and dissolved oxygen increased. Alfalfa co-planting with sunflower did not affect the extraction of inorganic contaminants from the soil, the PAH (M and H) degradation and was less efficient for PH C10-C40 and PAH-L as compared to alfalfa monoculture. The co-planting reduced shoot and root Pb concentrations. The residual soil ecotoxicity after 5months showed a positive effect of co-planting on L. sativum shoot dry weight (DW) yield. However, high contaminant concentrations in soil and leachate still inhibited the L. sativum root DW yield, earthworm development, and L. minor growth rate., (Copyright © 2017 Elsevier B.V. All rights reserved.)
- Published
- 2018
- Full Text
- View/download PDF
8. Assessing phytotoxicity of trace element-contaminated soils phytomanaged with gentle remediation options at ten European field trials.
- Author
-
Quintela-Sabarís C, Marchand L, Kidd PS, Friesl-Hanl W, Puschenreiter M, Kumpiene J, Müller I, Neu S, Janssen J, Vangronsveld J, Dimitriou I, Siebielec G, Gałązka R, Bert V, Herzig R, Cundy AB, Oustrière N, Kolbas A, Galland W, and Mench M
- Abstract
Gentle remediation options (GRO), i.e. in situ stabilisation, (aided) phytoextraction and (aided) phytostabilisation, were implemented at ten European sites contaminated with trace elements (TE) from various anthropogenic sources: mining, atmospheric fallout, landfill leachates, wood preservatives, dredged-sediments, and dumped wastes. To assess the performance of the GRO options, topsoil was collected from each field trial, potted, and cultivated with lettuce (Lactuca sativa L.) for 48days. Shoot dry weight (DW) yield, photosynthesis efficiency and major element and TE concentrations in the soil pore water and lettuce shoots were measured. GRO implementation had a limited effect on TE concentrations in the soil pore water, although use of multivariate Co-inertia Analysis revealed a clear amelioration effect in phytomanaged soils. Phytomanagement increased shoot DW yield at all industrial and mine sites, whereas in agricultural soils improvements were produced in one out of five sites. Photosynthesis efficiency was less sensitive than changes in shoot biomass and did not discriminate changes in soil conditions. Based on lettuce shoot DW yield, compost amendment followed by phytoextraction yielded better results than phytostabilisation; moreover shoot ionome data proved that, depending on initial soil conditions, recurrent compost application may be required to maintain crop production with common shoot nutrient concentrations., (Copyright © 2017 Elsevier B.V. All rights reserved.)
- Published
- 2017
- Full Text
- View/download PDF
9. Long-term Cu stabilization and biomass yields of Giant reed and poplar after adding a biochar, alone or with iron grit, into a contaminated soil from a wood preservation site.
- Author
-
Oustriere N, Marchand L, Lottier N, Motelica M, and Mench M
- Subjects
- Biomass, Charcoal, Copper analysis, Iron, Populus, Soil, Soil Pollutants analysis, Wood chemistry, Copper chemistry, Environmental Restoration and Remediation methods, Soil Pollutants chemistry
- Abstract
A 2-year pot experiment was carried out to examine the aging effect of biochar (B), alone or combined with iron grit (Z), on Cu stabilization and plant growth in a contaminated soil (964mg Cu kg
-1 ) from a wood preservation site. The experiment consisted in 3 soil treatments, either planted with Arundo donax L. (Ad) or Populus nigra L. (Pn): (1) untreated Cu-contaminated soil (Ad, Pn); (2) Unt+1% (w/w) B (AdB, PnB), and (3) Unt+1% B+1% Z (AdBZ, PnBZ). After 22months, the soil pore water (SPW) was sampled and roots and shoots were harvested. The SPW compositions at 3 and 22months were compared, showing that the SPW Cu2+ concentration increased again in the PnB and PnBZ soils. Cultivation of A. donax enhanced the dissolved organic matter concentration in the SPW, which decreased its Cu2+ concentration but promoted its total Cu concentration in the Ad and AdB soils. Adding Z with B reduced both SPW Cu2+ and Cu concentrations in the pots cultivated by A. donax and P. nigra as compared to B alone. The B and BZ treatments did not enhance root and shoot yields of both plant species as compared to the Unt soil but their shoot Cu concentrations were in the range of common values., (Copyright © 2016 Elsevier B.V. All rights reserved.)- Published
- 2017
- Full Text
- View/download PDF
10. Influence of biochars, compost and iron grit, alone and in combination, on copper solubility and phytotoxicity in a Cu-contaminated soil from a wood preservation site.
- Author
-
Oustriere N, Marchand L, Galland W, Gabbon L, Lottier N, Motelica M, and Mench M
- Subjects
- Biodegradation, Environmental, France, Phaseolus chemistry, Phaseolus growth & development, Solubility, Charcoal analysis, Composting, Copper toxicity, Iron chemistry, Phaseolus drug effects, Soil chemistry, Soil Pollutants toxicity
- Abstract
Two biochars, a green waste compost and iron grit were used, alone and in combination, as amendment to improve soil properties and in situ stabilize Cu in a contaminated soil (964mgCukg(-1)) from a wood preservation site. The pot experiment consisted in 9 soil treatments (% w/w): untreated Cu-contaminated soil (Unt); Unt soil amended respectively with compost (5%, C), iron grit (1%, Z), pine bark-derived biochar (1%, PB), poultry-manure-derived biochar (1%, AB), PB or AB+C (5%, PBC and ABC), and PB or AB+Z (1%, PBZ and ABZ). After a 3-month reaction period, the soil pore water (SPW) was sampled in potted soils and dwarf beans were grown for a 2-week period. In the SPW, all amendments decreased the Cu(2+) concentration, but total Cu concentration increased in all AB-amended soils due to high dissolved organic matter (DOM) concentration. No treatment improved root and shoot DW yields, which even decreased in the ABC and ABZ treatments. The PBZ treatment decreased total Cu concentration in the SPW while reducing the gap with common values for root and shoot yields of dwarf bean plants. A field trial is underway before any recommendation for the PB-based treatments., (Copyright © 2016 Elsevier B.V. All rights reserved.)
- Published
- 2016
- Full Text
- View/download PDF
11. Selecting chemical and ecotoxicological test batteries for risk assessment of trace element-contaminated soils (phyto)managed by gentle remediation options (GRO).
- Author
-
Kumpiene J, Bert V, Dimitriou I, Eriksson J, Friesl-Hanl W, Galazka R, Herzig R, Janssen J, Kidd P, Mench M, Müller I, Neu S, Oustriere N, Puschenreiter M, Renella G, Roumier PH, Siebielec G, Vangronsveld J, and Manier N
- Subjects
- Biodegradation, Environmental, Ecotoxicology, France, Risk Assessment methods, Soil, Soil Pollutants toxicity, Trace Elements toxicity, Environmental Restoration and Remediation, Soil Pollutants analysis, Toxicity Tests methods, Trace Elements analysis
- Abstract
During the past decades a number of field trials with gentle remediation options (GRO) have been established on trace element (TE) contaminated sites throughout Europe. Each research group selects different methods to assess the remediation success making it difficult to compare efficacy between various sites and treatments. This study aimed at selecting a minimum risk assessment battery combining chemical and ecotoxicological assays for assessing and comparing the effectiveness of GRO implemented in seven European case studies. Two test batteries were pre-selected; a chemical one for quantifying TE exposure in untreated soils and GRO-managed soils and a biological one for characterizing soil functionality and ecotoxicity. Soil samples from field studies representing one of the main GROs (phytoextraction in Belgium, Sweden, Germany and Switzerland, aided phytoextraction in France, and aided phytostabilization or in situ stabilization/phytoexclusion in Poland, France and Austria) were collected and assessed using the selected test batteries. The best correlations were obtained between NH4NO3-extractable, followed by NaNO3-extractable TE and the ecotoxicological responses. Biometrical parameters and biomarkers of dwarf beans were the most responsive indicators for the soil treatments and changes in soil TE exposures. Plant growth was inhibited at the higher extractable TE concentrations, while plant stress enzyme activities increased with the higher TE extractability. Based on these results, a minimum risk assessment battery to compare/biomonitor the sites phytomanaged by GROs might consist of the NH4NO3 extraction and the bean Plantox test including the stress enzyme activities., (Copyright © 2014 Elsevier B.V. All rights reserved.)
- Published
- 2014
- Full Text
- View/download PDF
12. Phytotoxicity testing of lysimeter leachates from aided phytostabilized Cu-contaminated soils using duckweed (Lemna minor L.).
- Author
-
Marchand L, Mench M, Marchand C, Le Coustumer P, Kolbas A, and Maalouf JP
- Subjects
- Agrostis chemistry, France, Fresh Water analysis, Fresh Water chemistry, Populus chemistry, Soil chemistry, Water Quality, Araceae drug effects, Copper toxicity, Environmental Restoration and Remediation methods, Soil Pollutants toxicity, Toxicity Tests methods
- Abstract
Aided phytostabilization of a Cu-contaminated soil was conducted at a wood preservation site located in southwest France using outdoor lysimeters to study leaching from the root zone and leachate ecotoxicity. The effects of Cu-tolerant plants (Agrostis gigantea L. and Populus trichocarpa x deltoides cv. Beaupré) and four amendments were investigated with seven treatments: untreated soil without plants (UNT) and with plants (PHYTO), and planted soils amended with compost (OM, 5% per air-dried soil weight), dolomitic limestone (DL, 0.2%), Linz-Donawitz slag (LDS, 1%), OM with DL (OMDL), and OM with 2% of zerovalent iron grit (OMZ). Total Cu concentrations (mgkg(-1)) in lysimeter topsoil and subsoil were 1110 and 111-153, respectively. Lysimeter leachates collected in year 3 were characterized for Al, B, Ca, Cu, Fe, Mg, Mn, P, K and Zn concentrations, free Cu ions, and pH. Total Cu concentration in leachates (mgL(-1)) ranged from 0.15±0.08 (LDS) to 1.95±0.47 (PHYTO). Plants grown without soil amendment did not reduce total Cu and free Cu ions in leachates. Lemna minor L. was used to assess the leachate phytotoxicity, and based on its growth, the DL, LDS, OM and OMDL leachates were less phytotoxic than the OMZ, PHYTO and UNT ones. The LDS leachates had the lowest Cu, Cu(2+), Fe, and Zn concentrations, but L. minor developed less in these leachates than in a mineral water and a river freshwater. Leachate Mg concentrations were in decreasing order OMDL>DL>PHYTO=OM=LDS>UNT=OMZ and influenced the duckweed growth., (Copyright © 2011 Elsevier B.V. All rights reserved.)
- Published
- 2011
- Full Text
- View/download PDF
13. Developing decision support tools for the selection of "gentle" remediation approaches.
- Author
-
Onwubuya K, Cundy A, Puschenreiter M, Kumpiene J, Bone B, Greaves J, Teasdale P, Mench M, Tlustos P, Mikhalovsky S, Waite S, Friesl-Hanl W, Marschner B, and Müller I
- Subjects
- Cost-Benefit Analysis statistics & numerical data, Germany, Software trends, Surveys and Questionnaires, Sweden, United Kingdom, Decision Support Techniques, Environmental Restoration and Remediation methods
- Abstract
A range of tools have been proposed to support decision making in contaminated land remediation. From a European perspective it is clear, however, that there are considerable national differences in the decision support process, and more generally in the extent to which this process supports the selection of less invasive, alternative remediation options such as phytoremediation, in situ immobilisation etc. (referred to here as "gentle" remediation technologies). In this paper we present results from the recently completed European Union ERANET SNOWMAN project SUMATECS (Sustainable Management of Trace Element Contaminated Sites), and critically review available decision support tools in terms of their fitness for purpose for the application of gentle remediation technologies. Stakeholder feedback indicates a lack of knowledge amongst stakeholders of currently available decision support tools. We propose that decision support which focuses on gentle remediation is more strongly incorporated into existing, well-established (national) decision support tools / decision-frameworks, to promote more widespread use and uptake.
- Published
- 2009
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.