1. The mitophagy effector FUNDC1 controls mitochondrial reprogramming and cellular plasticity in cancer cells.
- Author
-
Li J, Agarwal E, Bertolini I, Seo JH, Caino MC, Ghosh JC, Kossenkov AV, Liu Q, Tang HY, Goldman AR, Languino LR, Speicher DW, and Altieri DC
- Subjects
- A549 Cells, Animals, Humans, MCF-7 Cells, Membrane Proteins genetics, Mice, Mitochondrial Proteins genetics, NIH 3T3 Cells, Neoplasm Proteins genetics, Neoplasms genetics, PC-3 Cells, Membrane Proteins metabolism, Mitochondria metabolism, Mitochondrial Proteins metabolism, Mitophagy, Neoplasm Proteins metabolism, Neoplasms metabolism
- Abstract
Mitochondria are signaling hubs in eukaryotic cells. Here, we showed that the mitochondrial FUN14 domain-containing protein-1 (FUNDC1), an effector of Parkin-independent mitophagy, also participates in cellular plasticity by sustaining oxidative bioenergetics, buffering ROS production, and supporting cell proliferation. Targeting this pathway in cancer cells suppressed tumor growth but rendered transformed cells more motile and invasive in a manner dependent on ROS-mediated mitochondrial dynamics and mitochondrial repositioning to the cortical cytoskeleton. Global metabolomics and proteomics profiling identified a FUNDC1 interactome at the mitochondrial inner membrane, comprising the AAA+ protease, LonP1, and subunits of oxidative phosphorylation, complex V (ATP synthase). Independently of its previously identified role in mitophagy, FUNDC1 enabled LonP1 proteostasis, which in turn preserved complex V function and decreased ROS generation. Therefore, mitochondrial reprogramming by a FUNDC1-LonP1 axis controls tumor cell plasticity by switching between proliferative and invasive states in cancer., (Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.)
- Published
- 2020
- Full Text
- View/download PDF