Digital gait biomarkers (including walking speed) indicate functional decline and predict hospitalization and mortality. However, waist or lower-limb devices often used are not designed for continuous life-long use. While wrist devices are ubiquitous and many large research repositories include wrist-sensor data, widely accepted and validated digital gait biomarkers derived from wrist-worn accelerometers are not available yet. Here we describe the development of advanced signal processing algorithms that extract digital gait biomarkers from wrist-worn devices and validation using 1-week data from 78,822 UK Biobank participants. Our gait biomarkers demonstrate good test-retest-reliability, strong agreement with electronic walkway measurements of gait speed and self-reported pace and significantly discriminate individuals with poor self-reported health. With the almost universal uptake of smart-watches, our algorithms offer a new approach to remotely monitor life-long population level walking speed, quality, quantity and distribution, evaluate disease progression, predict risk of adverse events and provide digital gait endpoints for clinical trials., (© 2022. The Author(s).)