Xu T, Fan Z, Li W, Dietel B, Wu Y, Beckmann MW, Wrosch JK, Buchfelder M, Eyupoglu IY, Cao Z, and Savaskan NE
Brain tumors are fast proliferating and destructive within the brain microenvironment. Effective chemotherapeutic strategies are currently lacking which combat this deadly disease curatively. The glioma-specific chloride ion channel represents a specific target for therapy. Chlorotoxin (CTX), a peptide derived from scorpion venom, has been shown to be specific and efficacious in blocking glioma Cl(-) channel activity. Here, we report on two new derivatives (termed CA4 and CTX-23) designed and generated on the basis of the peptide sequence alignments of CTX and BmKCT. The novel peptides CA4 and CTX-23 are both effective in reducing glioma cell proliferation. In addition, CTX, CA4 and CTX-23 impact on cell migration and spheroid migration. These effects are accompanied by diminished cell extensions and increased nuclear sizes. Furthermore, we found that CA4 and CTX-23 are selective with low toxicity against primary neurons and astrocytes. In the ex vivo VOGiM, which maintain the entire brain tumor microenvironment, both CTX and CA4 display anti-tumor activity and reduce tumor volume. Hence, CTX and CA4 reveal anti-angiogenic properties with endothelial and angiogenic hotspots disrupting activities. These data report on the identification of two novel CTX derivatives with multiple anti-glioma properties including anti-angiogenesis.