4 results on '"Manzoor Ahmad Mir"'
Search Results
2. Molecular docking analysis and evaluation of the antimicrobial properties of the constituents of Geranium wallichianum D. Don ex Sweet from Kashmir Himalaya
- Author
-
Wajahat Rashid Mir, Basharat Ahmad Bhat, Muzafar Ahmad Rather, Showkeen Muzamil, Abdullah Almilaibary, Mustfa Alkhanani, and Manzoor Ahmad Mir
- Subjects
Medicine ,Science - Abstract
Abstract Geranium wallichianum D. Don ex Sweet is a well-known medicinal plant in Kashmir Himalya. The evidence for its modern medicinal applications remains majorly unexplored. The present study was undertaken to elucidate the detailed antimicrobial promises of different crude extracts (methanolic, ethanolic, petroleum ether, and ethyl acetate) of G. wallichainum against common human bacterial and fungal pathogens in order to scientifically validate its traditional use. The LC–MS analysis of G. wallichainum yielded 141 bioactive compounds with the vast majority of them having therapeutic applications. Determination of minimum inhibitory concentrations (MICs) by broth microdilution method of G. wallichainum was tested against bacterial and fungal pathogens with MICs ranging from 0.39 to 400 µg/mL. Furthermore, virtual ligands screening yielded elatine, kaempferol, and germacrene-A as medicinally most active constituents and the potential inhibitors of penicillin-binding protein (PBP), dihydropteroate synthase (DHPS), elongation factor-Tu (Eu-Tu), ABC transporter, 1,3 beta glycan, and beta-tubulin. The root mean square deviation (RMSD) graphs obtained through the molecular dynamic simulations (MDS) indicated the true bonding interactions which were further validated using root mean square fluctuation (RMSF) graphs which provided a better understanding of the amino acids present in the proteins responsible for the molecular motions and fluctuations. The effective binding of elatine, kaempferol, and germacrene-A with these proteins provides ground for further research to understand the underlying mechanism that ceases the growth of these microbes.
- Published
- 2022
- Full Text
- View/download PDF
3. Metabolite fingerprinting of phytoconstituents from Fritillaria cirrhosa D. Don and molecular docking analysis of bioactive peonidin with microbial drug target proteins
- Author
-
Basharat Ahmad Bhat, Wajahat Rashid Mir, Bashir Ahmad Sheikh, Mustafa Alkanani, and Manzoor Ahmad Mir
- Subjects
Medicine ,Science - Abstract
Abstract Fritillaria cirrhosa D. Don (Liliaceae), a valuable and critically endangered medicinal herb of northwest India, including Jammu and Kashmir, grows in temperate to alpine regions of the Himalaya. It is known as the traditional herb for cardiovascular diseases, respiratory diseases, and metabolic disorders. The plant bulbs are precious and are used to cure many other health complications. The current study analysed the phytoconstituents by liquid chromatography-mass spectrometry (LC–MS) of different crude extracts (methanolic, petroleum ether, and ethyl acetate) of F. cirrhosa. The LC–MS analysis from the bulbs of F. cirrhosa yielded 88 bioactive compounds, with the vast majority having therapeutic applications. Further, determination of minimum inhibitory concentrations (MICs) by broth microdilution method of F. cirrhosa against tested bacterial and fungal pathogens showed remarkable results with MICs ranging between 6.25–200 µg/mL and 50–400 µg/mL, respectively. Subsequently, these 88 identified phytocompounds were tested for their bioactivity through ADMET prediction by SwissADME and in silico molecular docking studies. Results revealed that Peonidin might have maximum antibacterial and antifungal activity against various microbial protein drug targets among the phytochemical compounds identified. Furthermore, the highest binding affinity complex was subjected to molecular dynamic simulation (MDS) analysis using Desmond Schrodinger v3.8. The root-mean-square deviation (RMSD) graphs obtained through the molecular dynamic simulations indicated the true bonding interactions, further validated using the root-mean-square fluctuation (RMSF) graphs which provided a better understanding of the amino acids present in the proteins responsible for the molecular motions and fluctuations. To our best knowledge, this is the first description of the phytochemical constituents of the bulbs of F.cirrhosa analyzed through LC–MS, which show pharmacological significance. The in silico molecular docking and molecular dynamics study of peonidin was also performed to confirm its broad-spectrum activities based on the binding interactions with the antibacterial and antifungal target proteins. The present study results will create a way for the invention of herbal medicines for several ailments by using F. cirrhosa plants, which may lead to the development of novel drugs.
- Published
- 2022
- Full Text
- View/download PDF
4. Metabolite fingerprinting of phytoconstituents from Fritillaria cirrhosa D. Don and molecular docking analysis of bioactive peonidin with microbial drug target proteins
- Author
-
Basharat Ahmad Bhat, Wajahat Rashid Mir, Bashir Ahmad Sheikh, Mustafa Alkanani, and Manzoor Ahmad Mir
- Subjects
Anthocyanins ,Molecular Docking Simulation ,Multidisciplinary ,Antifungal Agents ,Plants, Medicinal ,Fritillaria ,Plant Extracts ,Phytochemicals ,Anti-Bacterial Agents - Abstract
Fritillaria cirrhosa D. Don (Liliaceae), a valuable and critically endangered medicinal herb of northwest India, including Jammu and Kashmir, grows in temperate to alpine regions of the Himalaya. It is known as the traditional herb for cardiovascular diseases, respiratory diseases, and metabolic disorders. The plant bulbs are precious and are used to cure many other health complications. The current study analysed the phytoconstituents by liquid chromatography-mass spectrometry (LC–MS) of different crude extracts (methanolic, petroleum ether, and ethyl acetate) of F. cirrhosa. The LC–MS analysis from the bulbs of F. cirrhosa yielded 88 bioactive compounds, with the vast majority having therapeutic applications. Further, determination of minimum inhibitory concentrations (MICs) by broth microdilution method of F. cirrhosa against tested bacterial and fungal pathogens showed remarkable results with MICs ranging between 6.25–200 µg/mL and 50–400 µg/mL, respectively. Subsequently, these 88 identified phytocompounds were tested for their bioactivity through ADMET prediction by SwissADME and in silico molecular docking studies. Results revealed that Peonidin might have maximum antibacterial and antifungal activity against various microbial protein drug targets among the phytochemical compounds identified. Furthermore, the highest binding affinity complex was subjected to molecular dynamic simulation (MDS) analysis using Desmond Schrodinger v3.8. The root-mean-square deviation (RMSD) graphs obtained through the molecular dynamic simulations indicated the true bonding interactions, further validated using the root-mean-square fluctuation (RMSF) graphs which provided a better understanding of the amino acids present in the proteins responsible for the molecular motions and fluctuations. To our best knowledge, this is the first description of the phytochemical constituents of the bulbs of F.cirrhosa analyzed through LC–MS, which show pharmacological significance. The in silico molecular docking and molecular dynamics study of peonidin was also performed to confirm its broad-spectrum activities based on the binding interactions with the antibacterial and antifungal target proteins. The present study results will create a way for the invention of herbal medicines for several ailments by using F. cirrhosa plants, which may lead to the development of novel drugs.
- Published
- 2021
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.