1. Depot medroxyprogesterone acetate (DMPA) enhances susceptibility and increases the window of vulnerability to HIV-1 in humanized mice.
- Author
-
Wessels JM, Nguyen PV, Vitali D, Mueller K, Vahedi F, Felker AM, Dupont HA, Bagri P, Verschoor CP, Deshiere A, Mazzulli T, Tremblay MJ, Ashkar AA, and Kaushic C
- Subjects
- Animals, Cytokines metabolism, Delayed-Action Preparations, Disease Susceptibility chemically induced, Female, Humans, Infant, Newborn, Macrophages, Mice, Mice, Inbred C57BL, Vagina immunology, Vagina metabolism, Vagina virology, Contraceptive Agents, Hormonal adverse effects, HIV-1, Host-Pathogen Interactions drug effects, Medroxyprogesterone Acetate adverse effects, Vagina drug effects
- Abstract
The progestin-based hormonal contraceptive Depot Medroxyprogesterone Acetate (DMPA) is widely used in sub-Saharan Africa, where HIV-1 is endemic. Meta-analyses have shown that women using DMPA are 40% more likely than women not using hormonal contraceptives to acquire Human Immunodeficiency Virus (HIV-1). Therefore understanding how DMPA increases susceptibility to HIV-1 is an important public health issue. Using C57BL/6 mice and our previously optimized humanized mouse model (NOD-Rag1
tm1Mom Il2rgtm1Wjl transplanted with hCD34-enriched hematopoietic stem cells; Hu-mice) where peripheral blood and tissues are reconstituted by human immune cells, we assessed how DMPA affected mucosal barrier function, HIV-1 susceptibility, viral titres, and target cells compared to mice in the diestrus phase of the estrous cycle, when endogenous progesterone is highest. We found that DMPA enhanced FITC-dextran dye leakage from the vaginal tract into the systemic circulation, enhanced target cells (hCD68+ macrophages, hCD4+ T cells) in the vaginal tract and peripheral blood (hCD45+hCD3+hCD4+hCCR5+ T cells), increased the rate of intravaginal HIV-1 infection, extended the window of vulnerability, and lowered vaginal viral titres following infection. These findings suggest DMPA may enhance susceptibility to HIV-1 in Hu-mice by impairing the vaginal epithelial barrier, increasing vaginal target cells (including macrophages), and extending the period of time during which Hu-mice are susceptible to infection; mechanisms that might also affect HIV-1 susceptibility in women.- Published
- 2021
- Full Text
- View/download PDF