1. Optical Parameters of Both As2S3 and As2Se3 Thin Films from Ultraviolet to the Near-Infrared via Variable-Angle Spectroscopic Ellipsometer.
- Author
-
Abdel-Wahab, F., Ashraf, I. M., and Ahmed, F. B. M.
- Subjects
- *
THIN films , *BAND gaps , *ENERGY bands , *REFRACTIVE index , *CHALCOGENIDE films , *OPTICAL constants - Abstract
In the UV-visible-near infrared regions from 245 to 1000 nm, variable-angle spectroscopic ellipsometer (VASE) was used to investigate optical functions of As2S3 and As2Se3 thin films. In the entire measured spectral range, data were analyzed by assembly from several dispersion models. These assemblies comprise individual Tauc–Lorentz supplemented by several Lorentz (TL-group) or single Cody–Lorentz with several Lorentz (CL-group) models. For As2S3 and As2Se3 thin films, the optical parameters were quantified. The model parameters, such as the Lorentz amplitude, resonance frequency, oscillator width, extinction coefficients, refractive indices, and Urbach and optical band energy of both films were obtained. The band gap energy Eg was experimentally determined using the obtained data of CL-group from (αhν)1/2 vs. hν plots. It is found that the band gap energies of As2Se3 and As2S3 were 1.796 and 2.349 eV, respectively. The Eg values for the films were theoretically investigated by the bond statistics of the random covalent network model (CRNM) with the aid of Manca's relation. Plausible agreement between the experimental and calculated Eg values for both samples was obtained. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF