1. Adiabatic Ensemble Control of a Continuum of Quantum Systems
- Author
-
Mario Sigalotti, Ugo Boscain, Nicolas Augier, Centre de Mathématiques Appliquées - Ecole Polytechnique (CMAP), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS), Laboratoire Jacques-Louis Lions (LJLL (UMR_7598)), Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Control And GEometry (CaGE ), Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jacques-Louis Lions (LJLL (UMR_7598)), Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), ANR-17-CE40-0007,QUACO,Contrôle quantique : systèmes d'EDPs et applications à l'IRM(2017), Sigalotti, Mario, Contrôle quantique : systèmes d'EDPs et applications à l'IRM - - QUACO2017 - ANR-17-CE40-0007 - AAPG2017 - VALID, and ANR-17-CE40-0007,QUACO,Contrôle quantique : systèmes d’EDPs et applications à l’IRM(2017)
- Subjects
Control and Optimization ,Applied Mathematics ,010102 general mathematics ,Hilbert space ,Stimulated Raman adiabatic passage ,[MATH.MATH-OC] Mathematics [math]/Optimization and Control [math.OC] ,01 natural sciences ,Controllability ,Adiabatic theorem ,symbols.namesake ,Classical mechanics ,[INFO.INFO-AU]Computer Science [cs]/Automatic Control Engineering ,0103 physical sciences ,symbols ,[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC] ,0101 mathematics ,010306 general physics ,Adiabatic process ,Hamiltonian (quantum mechanics) ,[INFO.INFO-AU] Computer Science [cs]/Automatic Control Engineering ,Quantum ,Eigenvalues and eigenvectors ,Mathematics - Abstract
International audience; In this article we discuss how to control a parameter-dependent family of quantum systems. Our technique is based on adiabatic approximation theory and on the presence of curves of conical eigenvalue intersections of the controlled Hamiltonian. As particular cases, we recover chirped pulses for two-level quantum systems and counter-intuitive solutions for three-level stimulated Raman adiabatic passage (STIRAP). The proposed technique works for systems evolving both in finite-dimensional and infinite-dimensional Hilbert spaces. We show that the assumptions guaranteeing ensemble controllability are structurally stable with respect to perturbations of the parametrized family of systems.
- Published
- 2018